Polynomials and Quadratic Functions Review

Name				Class	
Factor the following expressions:					
1	$y^2 - y - 30$	2	<i>x</i> ⁴ –1	3	$3x^2 + 11x + 6$
4	$5x^2 + 60x + 100$	5	2 <i>x⁵y</i> – 32 <i>xy</i>	6	$4x^4 - 29x^2 + 25$
Solve the following equations: 7 $r^2 + 2r - 3 = 4$			8	$r^2 + 20r + 73 =$	-9

- 9 For which function defined by a polynomial are the zeros of the polynomial -4 and -6?
 - (1) $y = x^2 10x 24$ (3) $y = x^2 + 10x 24$ (4) $y = x^2 10x + 24$

10 The graphs below represent functions defined by polynomials. For which function are the zeros of the polynomials 2 and –3?

- **11** Which equation has roots of -3 and 5? (1) $x^2 + 2x - 15 = 0$ (3) $x^2 + 2x + 15 = 0$ (2) $x^2 - 2x - 15 = 0$ (4) $x^2 - 2x + 15 = 0$
- **12** The function f(x) is given below.

 $f(x) = x^2 + 2x - 3$

a) Describe the effect on the graph of f(x), if g(x) = f(x-5).

b) Show that the vertices of f(x) and g(x) support your description.

- **13** A model rocket is launched from a platform in a flat, level field and lands in the same field. The height of the rocket follows the function, $f(x) = -16x^2 + 150x + 5$, where f(x) is the height, in feet, of the rocket and x is the time, in seconds, since the rocket is launched.
 - a) Determine the maximum height, to the *nearest tenth of a foot*, the rocket reaches.
 - b) Determine the length of time, to the *nearest tenth of a second*, from when the rocket is launched until it hits the ground.
- **14** Consider the equation $x^2 2x 6 = y + 2x + 15$ and the function $f(x) = 4x^2 16x 84$ in the following questions.
 - a) Show that the graph of the equation $x^2 2x 6 = y + 2x + 15$ has *x*-intercepts at x = -3 and 7.
 - b) Show that the zeroes of the function $f(x) = 4x^2 16x 84$ are the same as the *x* values of the *x*-intercepts for the graph of the equation in part (a).
 - c) Explain how this function is different from the equation in part (a).
 - d) Identify the vertex of the graphs of each by rewriting the equation and function in the completed-square form, $f(x) = a(x h)^2 + k$. Show your work. What is the same about the two vertices? How are they different? Explain why there is a difference.

15 An arrow is shot into the air. A function representing the relationship between the number of seconds it is in the air, *t*, and the height of the arrow in meters, *h*, is given by:

$$h(t) = -4.9t^2 + 29.4t + 2.5$$

a) Complete the square for this function.

- b) What is the maximum height of the arrow? Explain how you know.
- c) How long does it take the arrow to reach its maximum height? Explain how you know.

- d) What is the average rate of change for the interval from t = 1 to t = 2 seconds? Compare your answer to the average rate of change for the interval from t = 2 to t = 3 seconds and explain the difference in the context of the problem.
- e) How long does it take the arrow to hit the ground? Show your work.