Problem Set \#. 4 - Commutative, Associative, and Distributive Properties

Name: \qquad Class: \qquad

1. Insert parentheses to make each statement true.
a. $2+3 \cdot 4^{2}+1=81$
b. $2+3 \cdot 4^{2}+1=85$
c. $2+3 \cdot 4^{2}+1=51$
d. $2+3 \cdot 4^{2}+1=53$
2. Given that $a>b$, which of the shaded regions is larger? Explain your reasoning.

3. Consider the expressions 851×29 and 849×31. Which would result in a larger product? Use a diagram to demonstrate your result.
4. Use the area models to represent and find the products of the following expressions.
a. $(4+x)(x+7)$
b. $7(x-3)$
c. $-2(x+4)$
d. $(2 x+4)(x+9)$
e. $a(a-x-1)$
f. $\quad 3 m(m+2)$
g. $(a-4)(a-4)$
h. $(3-h+a)(a-12)$
5. The following portion of a flow diagram shows that the expression $\boldsymbol{a b}+\boldsymbol{c} \boldsymbol{d}$ is equivalent to the expression $\boldsymbol{d} \boldsymbol{c}+\boldsymbol{b} \boldsymbol{a}$. Fill in each circle with the appropriate symbol: Either C_{+}(for the "Commutative Property of Addition") or C_{\times}(for the "Commutative Property of Multiplication").

6. Fill in the blanks of this proof showing that $(w+5)(w+2)$ is equivalent to $w^{2}+7 x+10$. Write either "Commutative Property," "Associative Property," or "Distributive Property" in each blank.

$$
\begin{aligned}
(w+5)(w+2) & =(w+5) w+(w+5) \cdot 2 \\
& =w(w+5)+(w+5) \cdot 2 \\
& =w(w+5)+2 \cdot(w+5) \\
& =w^{2}+w \cdot 5+2(w+5) \\
& =w^{2}+5 w+2(w+5) \\
& =w^{2}+5 w+2 w+10 \\
& =w^{2}+(5 w+2 w)+10 \\
& =w^{2}+7 w+10
\end{aligned}
$$

7. Fill in each circle of the following flow diagram with one of the letters: C for Commutative Property (for either addition or multiplication), A for Associative Property (for either addition or multiplication), or D for Distributive Property.

8. What is a quick way to see that the value of the sum $53+18+47+82$ is 200 ? Did you use the associative and commutative properties of addition to answer the question?
9. If $a b=37$ and $x y=\frac{1}{37}$,
a. what is the value of the product $x \cdot b \cdot y \cdot a$?
b. Give some indication as to how you used the commutative and associative properties to evaluate $x \cdot b \cdot y \cdot a$.
10. The following is a proof of the algebraic equivalency of $(2 x)^{3}$ and $8 x^{3}$. Fill in each of the blanks with either the statement "Commutative Property" or "Associative Property."

$$
\begin{aligned}
(2 x)^{3} & =2 x \cdot 2 x \cdot 2 x \\
& =2(x \cdot 2)(x \cdot 2) x \\
& =2(2 x)(2 x) x \\
& =2 \cdot 2(x \cdot 2) x \cdot x \\
& =2 \cdot 2(2 x) x \cdot x \\
& =(2 \cdot 2 \cdot 2)(x \cdot x \cdot x) \\
& =8 x^{3}
\end{aligned}
$$

