Problem Set #1.4 - Commutative, Associative, and Distributive Properties

Name: _____

Class: _____

- 1. Insert parentheses to make each statement true.
 - a. $2 + 3 \cdot 4^2 + 1 = 81$
 - b. $2 + 3 \cdot 4^2 + 1 = 85$
 - c. $2 + 3 \bullet 4^2 + 1 = 51$
 - d. $2 + 3 \cdot 4^2 + 1 = 53$
- 2. Given that a > b, which of the shaded regions is larger? Explain your reasoning.

3. Consider the expressions 851 x 29 and 849 x 31. Which would result in a larger product? Use a diagram to demonstrate your result.

- 4. Use the area models to represent and find the products of the following expressions.
 - a. (4+x)(x+7) b. 7(x-3)

c.
$$-2(x+4)$$
 d. $(2x+4)(x+9)$

e. a(a - x - 1) f. 3m(m + 2)

g.
$$(a-4)(a-4)$$
 h. $(3-h+a)(a-12)$

5. The following portion of a flow diagram shows that the expression ab + cd is equivalent to the expression dc + ba. Fill in each circle with the appropriate symbol: Either C_+ (for the "Commutative Property of Addition") or C_{\times} (for the "Commutative Property of Multiplication").

6. Fill in the blanks of this proof showing that (w + 5)(w + 2) is equivalent to $w^2 + 7x + 10$. Write either "Commutative Property," "Associative Property," or "Distributive Property" in each blank.

$$(w+5)(w+2) = (w+5)w + (w+5) \cdot 2$$

= $w(w+5) + (w+5) \cdot 2$
= $w(w+5) + 2 \cdot (w+5)$
= $w^2 + w \cdot 5 + 2(w+5)$
= $w^2 + 5w + 2(w+5)$
= $w^2 + 5w + 2w + 10$
= $w^2 + (5w + 2w) + 10$
= $w^2 + 7w + 10$

 Fill in each circle of the following flow diagram with one of the letters: C for Commutative Property (for either addition or multiplication), A for Associative Property (for either addition or multiplication), or D for Distributive Property.

8. What is a quick way to see that the value of the sum 53 + 18 + 47 + 82 is 200? Did you use the associative and commutative properties of addition to answer the question?

9. If
$$ab = 37$$
 and $xy = \frac{1}{37}$,

- a. what is the value of the product $x \cdot b \cdot y \cdot a$?
- b. Give some indication as to how you used the commutative and associative properties to evaluate $x \cdot b \cdot y \cdot a$.
- 10. The following is a proof of the algebraic equivalency of $(2x)^3$ and $8x^3$. Fill in each of the blanks with either the statement "Commutative Property" or "Associative Property."

$$(2x)^{3} = 2x \cdot 2x \cdot 2x$$

$$= 2(x \cdot 2)(x \cdot 2)x$$

$$= 2(2x)(2x)x$$

$$= 2 \cdot 2(x \cdot 2)x \cdot x$$

$$= 2 \cdot 2(2x)x \cdot x$$

$$= (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$$

$$= 8x^{3}$$