$$\underbrace{\binom{2}{3} \times \cdots \times \binom{2}{3}}_{19 \text{ times}} = \underbrace{\underbrace{\left(-\frac{11}{5}\right) \times \cdots \times \left(-\frac{11}{5}\right)}_{\text{times}} = \left(-\frac{11}{5}\right)^{x}$$

 $\underbrace{(-12)\times\cdots\times(-12)}_{times} = (-12)^{15}$

- 2.) Identify the base and the exponent in each expression.
 - a.)
 10⁵
 Base:
 b.)
 (-7)⁵
 Base:
 c.)
 1⁹
 Base:
 Exponent:

 Exponent:

 Exponent:

 Exponent:

 $\underbrace{a \times \cdots \times a}_{m \ times} =$

- 3.) Order the following expressions from least to greatest. -5^2 , $(-5)^2$, and -2^5
- 4.) Arnie says that if you multiply -3.1 by itself four times, the result in exponential notation would be written as -3.1^4 . Is Arnie right in his notation? Why or why not?
- 5.) Write an expression with (-1) as its base that will produce a positive product.
- 6.) Write an expression with (-1) as its base that will produce a negative product.
- 7.) Write each number in exponential notation using 2 as the base.

8 =

Class: _____

8.) Brianna cut a piece of paper in half and threw away one half. She cut the remaining paper in half and threw away one half. She continued doing this until she had a piece of paper whose area was $\frac{1}{32}$ as great as the area of the original piece of paper. How many cuts did she make?

Simplify each expression. Write your answer in exponential notation.

9.)
$$(-2)^6 \cdot (-2)^2$$
 10.) $7.2^3 \cdot 7.2^4$ 11.) $q^8 \div q$

12.)
$$4^5 \div 4^{-6}$$
 13.) $xy^2 x^4 y^3$ 14.) $2.5x^3 y^6 \cdot 3x^2 y^4$

15.)
$$\left(\frac{2}{3}\right) \cdot \left(\frac{2}{3}\right)^5$$
 16.) $\left(-\frac{1}{6}\right)^5 \div \left(-\frac{1}{6}\right)^2$ 17.) $\frac{5^9 \cdot 5^7 \cdot 5^8}{5^3 \cdot 5^2 \cdot 5}$

18.)
$$p \cdot p^8$$

19.) $\frac{64a^8b^5}{4a^3b^2}$
20.) $7^{-9} \div 7^{-5}$

21.)
$$\left(-\frac{9}{7}\right)^{m} \cdot \left(-\frac{9}{7}\right)^{n} = 22.$$
 $\frac{ab^{3}}{b^{2}} = 23.$ $3^{7} \div 3^{-9} = 23.$

24.)
$$f^{10} \cdot f^{13} =$$
 25.) $1.2^3 \cdot 1.2^4 =$ 26.) $(-5) \cdot (-5)^5 =$

27.)
$$\left(\frac{1}{5}\right)^{6} \cdot \left(\frac{1}{5}\right)^{11} = 28.) (-C)^{4} \cdot (-C)^{8} = 29.) 9^{4} \cdot 9^{6} \cdot 9^{13} = 27.$$

$$\frac{h^{6}k^{2}}{h^{5}k}$$
30.) $\frac{28m^{7}n^{4}}{7m^{3}n^{2}}$
32.) $\frac{63x^{9}y^{7}}{9x^{3}y^{4}}$

- 33.) Let x be a positive integer. If $(-3)^9 \cdot (-3)^x = (-3)^{14}$, what is the value of x?
- 34.) Pluto has a diameter of about 10³ kilometers. The diameter of Saturn is approximately 10⁵ kilometers. How many times as great as Saturn's diameter is Pluto's diameter?

35.) Simplify:
$$\frac{3^6}{3^{-2}}$$

(A) 3^{-18} (B) 3^{-2} (C) 3^3 (D) 3^8
36.) Which number is equivalent to $\frac{4^4}{4^2}$?

(A) 2¹⁰

38.) What does it mean to persevere? How do you plan to make sure you persevere in this class?