problem Set \#\#| - Exponential Notation and the Product/Quotient of Powers

Name: \qquad Class: \qquad
1.) Use what you know about exponential notation to complete the expressions below.

$$
\begin{aligned}
& \underbrace{(-5) \times \cdots \times(-5)}_{17 \text { times }}= \\
& \underbrace{7 \times 7^{45}}_{\text {_times }^{7 \times \cdots \times 7}} \\
& \underbrace{4.3 \times \cdots \times 4.3}_{13 \text { times }}= \\
& \underbrace{\left(\frac{2}{3}\right) \times \cdots \times\left(\frac{2}{3}\right)}_{19 \text { times }}= \\
& \underbrace{(-12) \times \cdots \times(-12)}_{[\text {times }}=(-12)^{15} \\
& \underbrace{3.7 \times \cdots \times 3.7}_{\text {_times }}=3.7^{19} \\
& \underbrace{6 \times \cdots \times 6}_{4 \text { times }}= \\
& \underbrace{(-1.1) \times \cdots \times(-1.1)}_{9 \text { times }}= \\
& \underbrace{\left(-\frac{11}{5}\right) \times \cdots \times\left(-\frac{11}{5}\right)}_{- \text {times }}=\left(-\frac{11}{5}\right)^{x} \\
& \underbrace{a \times \cdots \times a}_{m \text { times }}=
\end{aligned}
$$

2.) Identify the base and the exponent in each expression.
a.) 10^{5} Base: \qquad
b.) $(-7)^{5}$
Base: \qquad c.) 1^{9}
Base: \qquad
Exponent: \qquad Exponent: \qquad Exponent: \qquad
3.) Order the following expressions from least to greatest.
$-5^{2},(-5)^{2}$, and -2^{5}
4.) Arnie says that if you multiply -3.1 by itself four times, the result in exponential notation
 would be written as -3.1^{4}. Is Arnie right in his notation? Why or why not?
5.) Write an expression with (-1) as its base that will produce a positive product. \qquad
6.) Write an expression with (-1) as its base that will produce a negative product. \qquad
7.) Write each number in exponential notation using 2 as the base.
$8=$
$16=$
$32=$
8.) Brianna cut a piece of paper in half and threw away one half. She cut the remaining paper in half and threw away one half. She continued doing this until she had a piece of paper whose area was $\frac{1}{32}$ as great as the area of the original piece of paper. How many cuts did she make?

Simplify each expression. Write your answer in exponential notation.
9.) $(-2)^{6} \cdot(-2)^{2}$
10.) $7.2^{3} \cdot 7.2^{4}$
11.) $q^{8} \div q$
12.) $4^{5} \div 4^{-6}$
13.) $x y^{2} x^{4} y^{3}$
14.) $2.5 x^{3} y^{6} \cdot 3 x^{2} y^{4}$
15.) $\left(\frac{2}{3}\right) \cdot\left(\frac{2}{3}\right)^{5}$
16.) $\left(-\frac{1}{6}\right)^{5} \div\left(-\frac{1}{6}\right)^{2}$
17.) $\frac{5^{9} \cdot 5^{7} \cdot 5^{8}}{5^{3} \cdot 5^{2} \cdot 5}$
18.) $p \cdot p^{8}$
19.) $\frac{64 a^{8} b^{5}}{4 a^{3} b^{2}}$
20.) $7^{-9} \div 7^{-5}$
21.) $\left(-\frac{9}{7}\right)^{m} \cdot\left(-\frac{9}{7}\right)^{n}=$
22.) $\frac{a b^{3}}{b^{2}}=$
23.) $3^{7} \div 3^{-9}=$
24.) $f^{10} \cdot f^{13}=$
25.) $1.2^{3} \cdot 1.2^{4}=$
26.) $(-5) \cdot(-5)^{5}=$
27.) $\left(\frac{1}{5}\right)^{6} \cdot\left(\frac{1}{5}\right)^{11}=$
28.) $(-C)^{4} \cdot(-C)^{8}=$
29.) $9^{4} \cdot 9^{6} \cdot 9^{13}=$
30.) $\frac{h^{6} k^{2}}{h^{5} k}$
31.) $\frac{28 m^{7} n^{4}}{7 m^{3} n^{2}}$
32.) $\frac{63 x^{9} y^{7}}{9 x^{3} y^{4}}$
33.) Let x be a positive integer. If $(-3)^{9} \cdot(-3)^{x}=(-3)^{14}$, what is the value of x ?
34.) Pluto has a diameter of about 10^{3} kilometers. The diameter of Saturn is approximately 10^{5} kilometers. How many times as great as Saturn's diameter is Pluto's diameter?
35.) Simplify: $\frac{3^{6}}{3^{-2}}$
(A) $\quad 3^{-18}$
(B) 3^{-2}
(C) 3^{3}
(D) 3^{8}
36.) Which number is equivalent to $\frac{4^{4}}{4^{2}}$?
(A) 2
(B) 8
(C) 16
(D) 256
37.) Which expression is equivalent to $2^{6} \times 2^{-4}$?
(A) $\quad 2^{10}$
(B) 2^{2}
(C) 2^{-2}
(D) $\quad 2^{-24}$

38.) What does it mean to persevere? How do you plan to make sure you persevere in this class?

