Cypes of and Properties of Real Numbers

Name		Class
	<i>Types of Real Numbers</i> :	
Natural: Counting numbers	Whole: The set of numbers containing	Integer: The set of numbers containing
	<i>zero</i> and all of the <i>natural</i>	zero, the natural numbers, and
Example: 1, 2, 3, 4,	numbers	all the negatives of the natural
	Example: 0, 1, 2, 3, 4,	numbers.
		Example:, -3, -2, -1, 0, 1, 2, 3,
Rational: A number that can be expressed	<i>Irrational:</i> A number that can not be	<i>Real:</i> The combined set of rational and
as the ratio of two integers.	expressed as the ratio of two	irrational numbers. Basically any
(Either terminates or repeats)	integers. (Doesn't terminate	number that can be represented on
Example: $-\frac{1}{2}$, 6.25, 0. $\overline{318}$, $\sqrt{4}$, etc	and doesn't repeat)	a number line. Includes naturals,
	Example: 0.121221222, $\sqrt{3}$, π , etc	wholes, and integers.

Properties of Real Numbers

Addition and multiplication are closed under the reals.

Property Name	<u>Example</u>	Description in Your Words
Distributive Property $a \cdot (b + c) = a \cdot b + a \cdot c$	$3 \cdot (4 + 5) = 3 \cdot 4 + 3 \cdot 5$	
<i>Commutative Property of Addition a + b = b + a</i>	3 + 4 = 4 + 3	

<i>Commutative Property of Multiplication</i> $a \cdot b = b \cdot a$	$3 \cdot 4 = 4 \cdot 3$	
Associative Property of Addition a + (b + c) = (a + b) + c	3 + (4 + 5) = (3 + 4) + 5	
Associative Property of Multiplication $a \cdot (b \cdot c) = (a \cdot b) \cdot c$	$3 \cdot (4 \cdot 5) = (3 \cdot 4) \cdot 5$	
Additive Identity Property a + 0 = a	4 + 0 = 4	
<i>Multiplicative Identity Property</i> <i>a</i> · 1 = <i>a</i>	4 · 1 = 4	
Additive Inverse Property a + (-a) = 0	4 + (-4) = 0	
Multiplicative Inverse Property, where $4 \cdot \left(\frac{1}{4}\right) = 1$, $a \neq 0$	$4 \cdot \left(\frac{1}{4}\right) = 1$	
Zero Property of Multiplication $a \cdot 0 = 0$	$4 \cdot 0 = 0$	

Addition Property of Equality If $a = b$, then $a + c = b + c$	If $x = 10$, then $x + 3 = 10 + 3$	
Subtraction Property of Equality If $a = b$, then $a - c = b - c$	If $x = 10$, then $x - 3 = 10 - 3$	
Multiplication Property of Equality If $a = b$, then $a \cdot c = b \cdot c$	If $x = 10$, then $x \cdot 3 = 10 \cdot 3$	
Division Property of Equality If $a = b$, then $a \div c = b \div c$, where $c \ne 0$	If $x = 10$, then $x/3 = 10/3$	
Substitution Property If <i>a</i> = <i>b</i> , then <i>a</i> may be substituted for <i>b</i> , or conversely	If $x = 5$ and $x + y = z$, then 5 + y = z	
Reflexive (Identity) Property of Equality a = a	12 = 12	
Symmetric Property of Equality If $a = b$ then $b = a$	If $x = 2.7$ then $2.7 = x$	
Transitive Property of Equality If $a = b$ and $b = c$, then $a = c$.	If $5x = 12$ and $12 = 3z$ then 5x = 3z	

- **1** Which choice is equivalent to -3(5+x)+4x?
 - (1) 4x + (-15 + 3x) (3) (-15 + 3x) + 4x
 - (2) 4x + (-3x 15) (4) -15 + 3x + 4x

According to the Multiplicative Identity, $(x + 7) \cdot \Box = \Box$, which choice shows the correct box entries (in order)?

- (1) 0, (x + 7) (3) 1, (x + 7)
- (2) 0, 0 (4) 1, 1
- **3** What is the additive inverse of a b?

2

- (1) -a+b (3) a-b(2) a+b (4) -a-b
- 4 Which property is illustrated by the statement 9 + (x + 5) = 9 + (5 + x)?
 - (1) Associative Property of Addition
- (3) Associative Property of Multiplication

(4) Commutative Property of Addition

- (2) Distributive Property
- **5** Which property is illustrated by the statement 3.5a + 0 = 3.5a?
 - (1) Additive Inverse Property (3
 - (3) Zero Property of Multiplication
 - (4) Additive Identity Property

Identify the property.

(3) Distributive Property

- **6** x(yz) = x(zy) **7** 2(x + y) = 2x + 2y
- **8** (X+Y)+Z=(Y+X)+Z**9** (X+Y)+Z=X+(Y+Z)
- **10** Using the Distributive Property, write an expression equivalent to 5(x-6).
- **11** Using the Distributive Property, write an expression equivalent to 6x + 12.

- **12** Using the Distributive Property, write an expression equivalent to -5x 25.
- **13** Using the Commutative Property, write an equivalent expression for $5 \cdot (7x)$.
- **14** The following equation is solved. Identify what properties are used to solve the equations.

$\frac{3}{4}x = 9$	
3 <i>x</i> = 36	
1 <i>x</i> = 12	
<i>x</i> = 12	

15 The following equation is solved. Identify what properties are used to solve the equations.

$$\frac{1}{2}x - g = m$$

$$\frac{1}{2}x + 0 = m + g$$

$$\frac{1}{2}x = m + g$$

$$1x = (m + g)2$$

$$x = (m + g)2$$

$$x = 2m + 2g$$

16 The following equation is solved. Identify what properties are used to solve the equations. 3(5-5x) = 5x

15 - 15x = 5x	
15 + 0 = 20x	
15 = 20 <i>x</i>	
$\frac{3}{4} = 1x$	
$\frac{3}{4} = X$	
$X = \frac{3}{4}$	

17 The following equation is solved. Identify what properties are used to solve the equations.

$$\frac{3}{4}(x+2)=6(x+12)$$

$\frac{3}{4}x + \frac{6}{4} = 6x + 72$	
$\frac{3}{4}x + 0 = 6x + \frac{282}{4}$	
$\frac{3}{4}x = 6x + \frac{282}{4}$	
$-\frac{21}{4}X = \frac{282}{4}$	
-21 <i>x</i> = 282	
$1x = -\frac{282}{21}$	
$X = -\frac{282}{21}$	

18 The following expression is simplified. Write a justification for each step. 12 + 3(a + 2b - 1) - 2a - 3b - 9 + b

$$12 + 3a + 6b - 3 - 2a - 3b - 9 + b$$

$$12 - 3 - 9 + 3a - 2a + 6b - 3b + b$$

$$(12 - 3 - 9) + (3a - 2a) + (6b - 3b + b)$$

$$(0) + (3a - 2a) + (6b - 3b + b)$$

$$(3a - 2a) + (6b - 3b + b)$$

$$a(3 - 2) + b(6 - 3 + 1)$$

$$a(1) + b(4)$$

$$1a + 4b$$

$$a + 4b$$

Subtraction

Addition and Subtraction