Gypes of and Properties of Real humbers

Name \qquad Class \qquad
Types of Real Numbers:

Natural: Counting numbers Example: 1, 2, 3, 4, ...	Whole: The set of numbers containing zero and all of the natural numbers Example: 0, 1, 2, 3, 4, ...	Integer: The set of numbers containing zero, the natural numbers, and all the negatives of the natural numbers. Example: ..., $-3,-2,-1,0,1,2,3, \ldots$
Rational: A number that can be expressed as the ratio of two integers. (Either terminates or repeats) Example: $-1 / 2,6.25,0 . \overline{318}, \sqrt{4}$, etc...	Irrational: A number that cannot be expressed as the ratio of two integers. (Doesn't terminate and doesn't repeat) Example: $0.121221222 \ldots, \sqrt{3}, \pi$, etc...	Real: The combined set of rational and irrational numbers. Basically any number that can be represented on a number line. Includes naturals, wholes, and integers.

Properties of Real Numbers

Addition and multiplication are closed under the reals.

Property Name	Example	Description in Your Words
Distributive Property $a \cdot(b+c)=a \cdot b+a \cdot c$	$3 \cdot(4+5)=3 \cdot 4+3 \cdot 5$	
Commutative Property of Addition $a+b=b+a$	$3+4=4+3$	

Commutative Property of Multiplication $a \cdot b=b \cdot a$	$3 \cdot 4=4 \cdot 3$	
Associative Property of Addition $a+(b+c)=(a+b)+c$	$3+(4+5)=(3+4)+5$	
Associative Property of Multiplication $a \cdot(b \cdot c)=(a \cdot b) \cdot c$	$3 \cdot(4 \cdot 5)=(3 \cdot 4) \cdot 5$	
Additive Identity Property $a+0=a$	$4+0=4$	
Multiplicative Identity Property $a \cdot 1=a$	$4 \cdot 1=4$	
Additive Inverse Property $a+(-a)=0$	$4+(-4)=0$	
Multiplicative Inverse Property, where $4 \cdot\left(\frac{1}{4}\right)=1, \quad a \neq 0$	$4 \cdot\left(\frac{1}{4}\right)=1$	
Zero Property of Multiplication $a \cdot 0=0$	$4 \cdot 0=0$	

Addition Property of Equality If $a=b$, then $a+c=b+c$	$\begin{gathered} \text { If } x=10, \\ \text { then } x+3=10+3 \end{gathered}$	
Subtraction Property of Equality If $a=b$, then $a-c=b-c$	$\begin{gathered} \text { If } x=10, \\ \text { then } x-3=10-3 \end{gathered}$	
Multiplication Property of Equality If $a=b$, then $a \cdot c=b \cdot c$	$\begin{gathered} \text { If } x=10 \\ \text { then } x \cdot 3=10 \cdot 3 \end{gathered}$	
Division Property of Equality If $a=b$, then $a \div c=b \div c$, where $c \neq 0$	$\begin{gathered} \text { If } x=10, \\ \text { then } x / 3=10 / 3 \end{gathered}$	
Substitution Property If $a=b$, then a may be substituted for b, or conversely	If $x=5$ and $x+y=z$, then $5+y=z$	
Reflexive (Identity) Property of Equality $a=a$	$12=12$	
Symmetric Property of Equality If $a=b$ then $b=a$	If $x=2.7$ then $2.7=x$	
Transitive Property of Equality If $a=b$ and $b=c$, then $a=c$.	If $5 x=12$ and $12=3 z$ then $5 x=3 z$	

1 Which choice is equivalent to $-3(5+x)+4 x$?
(1) $4 x+(-15+3 x)$
(3) $(-15+3 x)+4 x$
(2) $4 x+(-3 x-15)$
(4) $-15+3 x+4 x$

$$
(x+7) \cdot \square=\square
$$

2 According to the Multiplicative Identity, which choice shows the correct box entries (in order)?
(1) $0,(x+7)$
(3) $1,(x+7)$
(2) 0,0
(4) 1,1

3 What is the additive inverse of $a-b$?
(1) $-a+b$
(3) $a-b$
(2) $a+b$
(4) $-a-b$

4 Which property is illustrated by the statement $9+(x+5)=9+(5+x)$?
(1) Associative Property of Addition
(3) Associative Property of Multiplication
(2) Distributive Property
(4) Commutative Property of Addition

5 Which property is illustrated by the statement $3.5 a+0=3.5 a$?
(1) Additive Inverse Property
(3) Zero Property of Multiplication
(3) Distributive Property
(4) Additive Identity Property

Identify the property.
$6 \quad x(y z)=x(z y)$
$72(x+y)=2 x+2 y$
$8 \quad(x+y)+z=(y+x)+z$
$9(x+y)+z=x+(y+z)$

10 Using the Distributive Property, write an expression equivalent to $5(x-6)$.

11 Using the Distributive Property, write an expression equivalent to $6 x+12$.

12 Using the Distributive Property, write an expression equivalent to $-5 x-25$.

13 Using the Commutative Property, write an equivalent expression for $5 \cdot(7 x)$.

14 The following equation is solved. Identify what properties are used to solve the equations.

$$
\frac{3}{4} x=9
$$

$$
\begin{array}{r}
3 x=36 \\
1 x=12 \\
x=12
\end{array}
$$

\qquad
\qquad

15 The following equation is solved. Identify what properties are used to solve the equations.

\[

\]

17 The following equation is solved. Identify what properties are used to solve the equations.

$$
\frac{3}{4}(x+2)=6(x+12)
$$

$$
\begin{array}{r}
\frac{3}{4} x+\frac{6}{4}=6 x+72 \\
\frac{3}{4} x+0=6 x+\frac{282}{4} \\
\frac{3}{4} x=6 x+\frac{282}{4} \\
-\frac{21}{4} x=\frac{282}{4} \\
-21 x=282 \\
1 x=-\frac{282}{21} \\
x=-\frac{282}{21}
\end{array}
$$

18 The following expression is simplified. Write a justification for each step.

$$
\begin{aligned}
& 12+3(a+2 b-1)-2 a-3 b-9+b \\
& 12+3 a+6 b-3-2 a-3 b-9+b \\
& 12-3-9+3 a-2 a+6 b-3 b+b \\
&(12-3-9)+(3 a-2 a)+(6 b-3 b+b) \text { Subtraction } \\
&(0)+(3 a-2 a)+(6 b-3 b+b) \\
&(3 a-2 a)+(6 b-3 b+b) \\
& a(3-2)+b(6-3+1) \\
& a(1)+b(4) \\
& 1 a+4 b \\
& a+4 b \\
& \hline
\end{aligned}
$$

