Name: \qquad Class: \qquad

Consider the relation $f(x)=x^{2}-4 x+3$.
1.) Find $f(5)$
2.) Find $f(-7)$
3.) Find $f(2 a)$
4.) Find $f(3 x-4)$
5.) Graph the function using the table of values below.

x	$x^{2}-6 x+3$	(x, y)
-1		
0		
1		
2		
3		
4		
5		

6.) Find the average rate of change from $x=2$ to $x=5$.
7.) Determine if the relation is a function. Explain your reasoning.
8.) Determine the range of the function.

The table to the side shows the average yearly balance of a savings account where interest is compounded annually. The balance in dollars, $b(t)$, is a function of the time in years, t.
9.) Find $f(30)$ and interpret this value.
10.) Find t when $f(t)=1824.39$ and interpret this value.

Year	Balance, in Dollars
0	380.00
10	562.49
20	832.63
30	1232.49
40	1824.39
50	2700.54

11.) Find the average rate of change from 10 years to 40 years. Interpret this value.

Consider the function $h(x)$ to the side.
12.) Explain why this is a function.
13.) Find the following values.

$$
f(-3)=\quad f(2)=
$$

14.) Find all values of x for which $f(x)=0$.

15.) Find the domain and range of the function.
16.) Find the intervals over which the graph is increasing.
17.) Find the intervals over which the graph is decreasing.
18.) Find the approximate coordinates of the relative minimum and the relative maximum of the graph (turning points).

