Review for Test \# - - Relationships and Reasoning in Quantities, Equations, and Graphs

Name: \qquad Class: \qquad
For 1-4, identify the property shown in the following examples.
1.) $6+(3+1)=(6+3)+1$
2.) $9(x+3)=9 x+27$
3.) $2 \cdot 123=123 \cdot 2$
4.) $a+(b+c)=a+(c+b)$

Simplify.
5.) $\left(3 x^{2}+2 x-9\right)+\left(4 x^{2}-7 x+13\right)$
6.) $\left(7 x^{2}+4\right)+\left(x^{2}-2 x-4\right)$
7.) $\left(3 x^{2}+2 x-9\right)-\left(4 x^{2}-7 x+13\right)$
8.) $\left(7 x^{2}+4\right)-\left(x^{2}-2 x-4\right)$
9.) $4 x(x+8)-3 x^{2}(2 x-5)$
10.) $(x+5)(2 x+1)-2 x(x+5)$

Multiply.
11.) $(x+2)(x-8)$
12.) $(a-3)(a+3)$
13.) $(x+2)^{2}$
14.) $(2 x+3)\left(x^{2}+5 x+3\right)$
15.) $(4 x-5)^{2}$
16.) $\left(4 x^{2}-3 x+7\right)^{2}$
17.) The length of a side of a square window is $(5 x+3)$. Find the area of the window in terms of x.
18.) When $5 x^{2}+8 x-1$ is subtracted from $3 x^{2}+2 x-7$, what is the result?

Simplify the radicals below.
19.) $4 \sqrt{32}$
20.) $8 \sqrt{45}$
21.) $\sqrt{100}$
22.) $-7 \sqrt{98}$
23.) Draw an example of each type of function below.
a.) Linear

b.) Quadratic
c.) Exponential
24.) In an elevation vs. time graph, what does a horizontal, flat line represent?
25.) Eric walks into a hospital to go to a doctor's appointment. He takes the elevator to the $4^{\text {th }}$ floor. After walking around a bit, Eric realized he was on the wrong floor and takes the elevator again to the $11^{\text {th }}$ floor. Eric has his check up and is sent to the basement of the building where the lab is to get some x-rays done. When the x-rays are done, he takes the elevator back to the main floor and leaves. Draw an elevation-versus-time graph that represents Eric's trip to the hospital.
26.) Graph the number of cells versus time in seconds.

Time (seconds)	0	1	2	3	4
Number of cells	2	4	8	16	32

Is there a pattern? If so, what is it?

27.) Create a flow chart to show that $\mathrm{a}(\mathrm{b}+\mathrm{c})$ is equivalent to $\mathrm{ac}+\mathrm{ba}$. Use " C " for the Commutative Property, "A" for the Associative Property, and "D" for the Distributive Property
28.) Fill in the blanks showing that $(x+5)(3 x+4)$ is equivalent to $3 x^{2}+19 x+20$. Write either "Commutative Property," "Associative Property," or "Distributive Property" on each blank.

$$
\begin{aligned}
(x+5)(3 x+4) & =(x+5) \cdot 3 x+(x+5) \cdot 4 \\
& =3 x(x+5)+(x+5) \cdot 4 \\
& =3 x^{2}+15 x+(x+5) \cdot 4 \\
& =3 x^{2}+15 x+4(x+5) \\
& =3 x^{2}+15 x+4 x+20 \\
& =3 x^{2}+(15 x+4 x)+20 \\
& =3 x^{2}+19 x+20
\end{aligned}
$$

