Unit 11 Notes Rational and Irrational Numbers Pythagorean Theorem

Tentative Schedule

Day	Classwork	Assignment
Thurs. 5/30	Rational vs. Irrational Numbers	Study the first 15 perfect squares
Fri. 5/1 Mon. 5/4	Quiz on Perfect Squares Simplifying Radicals	None
Tues. 5/5	Work on P.S. #11.1	Finish P.S. #11.1
Wed. 5/6 Thurs. 5/7	Pythagorean Theorem	P.S. #11.2
Fri. 5/8	Applications of Pythagorean Theorem	P.S. #11.3
Mon. 5/11 Tues. 5/12	Distance Formula	P.S. #11.4
Wed. 5/13	Review Game	Review for Quest #11
Thurs. 5/14 Fri. 5/15	Quest #11	Begin Polynomials Unit

Notes 11.1 - Rational vs. Irrational and Simplifying Radicals

Fill in the following chart.

$1^2 = 1$	22 = 4	$3^2 = 9$	$4^2 = 16$	5 ² = 25	_
$6^2 = 36$	72 = 49	$8^2 = 6$	9 ² = 3 (10 ² =	_
$11^2 = 121$	122 = 144	13 ² = 169	$14^2 = 196$	$15^2 = 225$	_

Evaluate the following.

2.)
$$\sqrt{25}$$

3.)
$$\sqrt{49}$$

4.)
$$\sqrt{225}$$

6.)
$$\sqrt{-81}$$

7.)
$$-\sqrt{25}$$

9.)
$$\sqrt{-225}$$

$$10.)^{-\sqrt{169}}$$

monreal

non-real

non-real

(no# can be multiplied by itself to get -81.)

Rational Numbers	Irrational Numbers	
Definition	Definition	
· a# that either terminates or repeats	rathat doesn't terminate or lepeat	
· can be expressed as a	· contit be expressed as a fraction	
Froction. Examples	Examples	
8(8/1), 0.3(1/3), -4.1(-41) (9 (3)	T, 4.182371925	

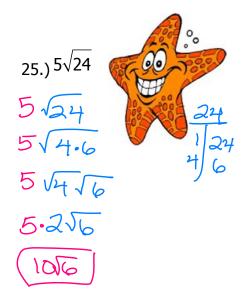
Identify whether the numbers below are rational or irrational. Explain why.

11.)4 Rotional 12.) I rrational 13.) √25 Ration al , ends , ends · doesn't endor · con be written · can be written as afraction. (4/1) as afraction. (=) · can't be written as a fraction.

15.) $-\frac{2}{3}$ Routional 14.) $\sqrt{11}$ (reation a) 16.) $\frac{3}{5}$ Rotional ends (6.6) · doesn't endor repeat · repeats (0.6) · can't be writer · can be written · con be uniter as a fraction. as afraction. as afraction 17.)3.14 Rational 19.) 1.10110111011110... 18.) -1,234,567, ends (rrationa) , ends · doesn't endor ·con be written afraction. (3 14) repeat · con be written · can't be writer as a fraction. Simplifying Radicals

Simplifying Radicals				
To Simplify Radicals	Example: √80			
1. Factor the number under the radical sign, if possible, so that one of its factors is the <i>largest possible</i> perfect square.	1. 80 80 20 5			
2. You are allowed to split up a radical sign if there is multiplication underneath it.	2. \(\sqrt{80} = \sqrt{16.5} = \sqrt{16.5} \)			
3. Evaluate the square root of the perfect square and leave the other factor underneath the radical sign.	3.			

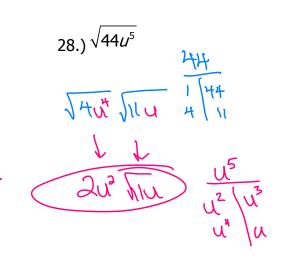
Simplify the radicals below:


$$20.)\sqrt{200}$$
 200
 1
 200
 4
 50
 8
 100
 1
 100
 1
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100

Misprime

22.) $\sqrt{17}$

10/2


24.) $\sqrt{52}$

$$\frac{26.)\frac{\sqrt{20}}{2}}{\sqrt{4}}$$

$$27.)\sqrt{27}x^{3}$$

$$\sqrt{27}x^{3}$$

Notes 11.2 - Pythagorean Theorem

Solve the following equations.

1.)
$$\sqrt{x^2} = \sqrt{16}$$

2.)
$$\sqrt{a^2} = 9$$

Right Triangles

Definition:

a 3-sided polygon wa 90° angle

Drawing:

a,b → legs C → hypotenuse (longest side)

In order for a triangle to be a right triangle, it has to satisfy the following equation:

$$a^2 + b^2 = c^2$$

This is called the <u>Pythagorean</u> <u>Theorem</u>

Indicate whether the following are right triangles:

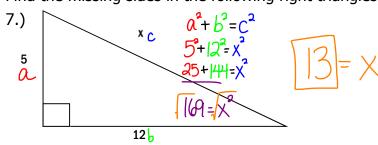
a=3 b=4 c=5 3.) 3,4,5

$$0^2 + b^2 = c^2$$
 $3^2 + 4^2 = 5^2$
 85

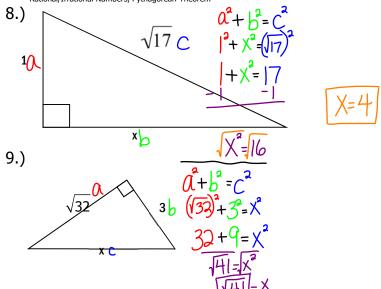
5.)
$$3,\sqrt{27},6$$
 $\lambda=3$ $b=\sqrt{27}$ C=6

$$0^{2} + 10^{2} = 0^{2}$$
 $3^{2} + (\sqrt{27})^{2} = 6^{2}$
 $9 + 27 = 36$
 $36 = 36\sqrt{485}$

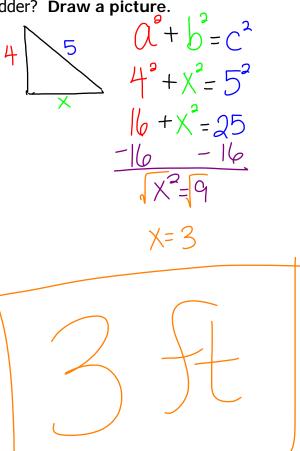
 $5^2 + 7^2 = 13^2$

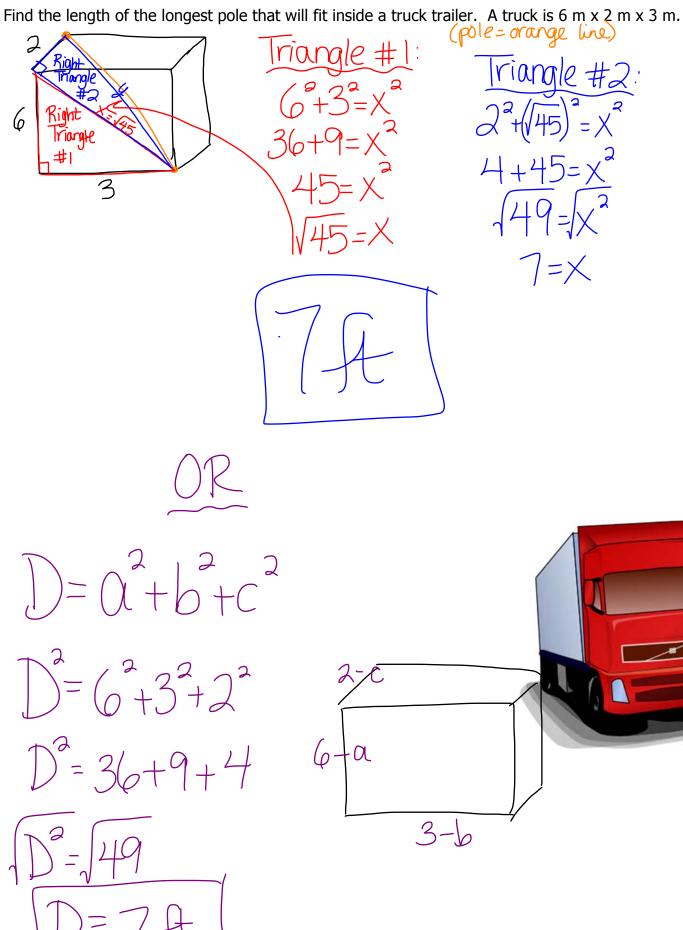

2

b=7 C=13


25+49=169

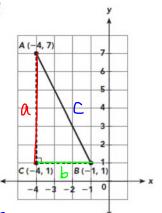
6.) 2,4,9 $\alpha = 2$ b = 4 c = 9

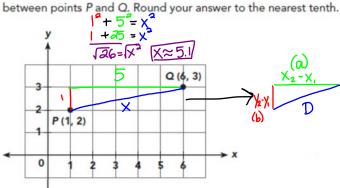

Find the missing sides in the following right triangles.



10.) A 5-foot ladder rests against a 4-foot vertical wall. How far away from the wall is the foot of the ladder? **Draw a picture**.

7


Notes 11.3 - Applications of Pythagorean Theorem

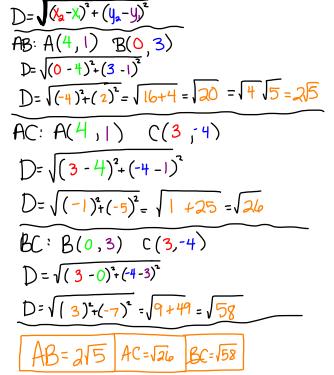

Notes 11.4 - Distance Formula

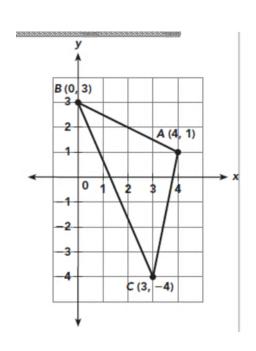
1.) Find the distance of all three sides of the triangle. Simplify the answer.

$$0^{2} + b^{2} = c^{2}$$
 $6^{2} + 3^{2} = x^{2}$
 $36 + 9 = x^{2}$
 $45 = x^{2}$
 45

2.) Points P(1, 2) and Q(6, 3) are plotted on a coordinate plane. Find the distance

$$\int_{1}^{2} + \int_{0}^{2} = C^{2}$$


$$\int_{1}^{2} (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} = \int_{0}^{2} dx$$


$$\sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} = \sqrt{D^2}$$

$$\sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} = D$$

The Distance Formula:

Find the lengths of all three sides of the triangle. Simplify the radical, if possible. $D = \sqrt{(\frac{1}{2} - \frac{1}{2})^2 + (\frac{1}{2} - \frac{1}{2})^2}$

