Unit 11 Notes Rational and Irrational Numbers Pythagorean Theorem

Gentative Schedule

Day	Classwork	Assignment
Thurs. 5/30	Rational vs. Irrational Numbers	Study the first 15 perfect squares
Fri. 5/1 Mon. 5/4	Quiz on Perfect Squares Simplifying Radicals	None
Tues. 5/5	Work on P.S. #11.1	Finish P.S. #11.1
Wed. 5/6 Thurs. 5/7	Pythagorean Theorem	P.S. #11.2
Fri. 5/8	Applications of Pythagorean Theorem	P.S. #11.3
Mon. 5/11 Tues. 5/12	Distance Formula	P.S. #11.4
Wed. 5/13	Review Game	Review for Quest #11
Thurs. 5/14 Fri. 5/15	Quest #11	Begin Polynomials Unit

Name: _____

Notes 11.1 - Rational vs. Irrational and Simplifying Radicals

Fill in the following chart.

$1^2 =$	2 ² =	3 ² =	4 ² =	$5^2 =$	
6 ² =	7 ² =	8 ² =	9 ² =	$10^2 =$	
$11^2 =$	12 ² =	13 ² =	14 ² =	15 ² =	
Evaluate the follo	owing.	uzuzuzuzuzuzuzuzuzuzuzuzuzuzuzuzuzuzuz			n (na (na (na (
1.) $\sqrt{81}$	2.) √ 25	3.) √49	4.) √225	5.) \ 169	
6.) ^{√_81}	7.) [_] √25	8.) ^{√_49}	9.) √–225	10.) $^{-\sqrt{169}}$	

Rational Numbers	Irrational Numbers
Definition	Definition
Examples	Examples

Identify whether the numbers below are rational or irrational. Explain why.

11.)4 12.)п 13.) √25

14.)
$$\sqrt{11}$$
 15.) $-\frac{2}{3}$ 16.) $\frac{3}{5}$

17.)3.14	18.) –1,234,567	19.)1.10110111011110

Simplifying Radicals

To Simplify Radicals	Example: $\sqrt{80}$
1. Factor the number under the radical sign, if possible, so that one of its factors is the <i>largest possible</i> perfect square.	1.
 You are allowed to split up a radical sign if there is multiplication underneath it. 	2.
3. Evaluate the square root of the perfect square and leave the other factor underneath the radical sign.	3.

24.) $\sqrt{52}$

26.) $\frac{\sqrt{20}}{2}$

28.) $\sqrt{44u^5}$

Notes 11.2 - Pythagorean Theorem

Solve the following equations.

1.) $x^2 = 16$ 2.) $a^2 = 9$

In order for a triangle to be a right triangle, it has to satisfy the following equation:

This is called the _____Indicate whether the following are right triangles:3.) 3,4,54.) 5,7,13

5.) 3, $\sqrt{27}$, 6 **6.)** 2,4,9

Find the missing sides in the following right triangles.

10.) A 5-foot ladder rests against a 4-foot vertical wall. How far away from the wall is the foot of the ladder? **Draw a picture.**

Notes 11.3 - Applications of Pythagorean Theorem

Find the length of the longest pole that will fit inside a truck trailer. A truck is 6 m x 2 m x 3 m.

Notes 11.4 - Distance Formula

1.) Find the distance of all three sides of the triangle. Simplify the answer.

2.) Points P (1, 2) and Q (6, 3) are plotted on a coordinate plane. Find the distance between points P and Q. Round your answer to the nearest tenth.

3.) Find the lengths of all three sides of the triangle. Simplify the radical, if possible.

