Unit IR hotes
 hature of and Gransformations of Functions

$\sin (x) \cos (x) \tan (x) \cot (x)$

$|x|$

Gentertive Schedule

Day	Classwork	Assignment
Wed. 4/29	Finish Transformations of Graphs Activity	Video \#12.1 - Vertical and Horizontal Shifts
Thurs. $4 / 30$ Fri. $5 / 1$	P.S. \#12.1	Video \#12.2 - Reflections over Axes and Vertical Stretches/Compressions
Mon. $5 / 4$	P.S. \#12.2	Video \#12.3 - Horizontal Stretches/Compressions
Tues. $5 / 5$ Wed. $5 / 6$	P.S. \#12.3	Video \#12.4 - Systems of Equations (including non-linear equations)
Thurs. $5 / 7$	Finish problem set packet	
Fri. $5 / 8$ Mon. $5 / 11$	Review for Test \#12	Rest \#12 for Test \#12

Name: \qquad

s!xe-K 2¢ł „noqe		(x-)!
		(x)!-

Stretches and compressions For $\mathrm{c}>1$, to obtain the graph of:		
$\mathbf{c f (\mathbf { x })}$	stretch the graph of $f(x)$	vertically by a factor of c
$\mathbf{(1 / \mathbf { c }) \mathbf { f } (\mathbf { x })}$	compress the graph of $f(x)$	vertically by a factor of c
$\mathbf{f (\mathbf { c x })}$	compress the graph of $f(x)$	horizontally by a factor of c
$\mathbf{f (x / c)}$	stretch the graph of $f(x)$	horizontally by a factor of c

st!un 5 ¢		$(0-x) \ddagger$
St!un 0 ¥ə		$(0+x) \ddagger$
st!un o pıemumop		0-(x) \ddagger
st!un 0 paemdn		0+(x) \ddagger

hotes 12.4 - Vertical and Horizontal Shifts

Let's summarize what we have learned in the transformations of graphs activity.

Graph the following functions using their parent functions and your knowledge of vertical and horizontal shifts.
1.) $g(x)=x^{2}+2$

3.) $k(x)=|x|-3$

2.) $h(x)=(x+2)^{2}$

4.) $a(x)=|x-3|$

5.) $r(x)=2^{x+3}-4$

6.) $t(x)=\sqrt{x-1}-2$

7.) Given the parent function $f(x)=x^{3}$, find the equation of the function that is the transformation of $f(x)$ when shifted up 7 and right 8.
8.) Given the function $f(x)=3(x-5)^{2}+4$, find the equation of the function that is the transformation of $f(x)$ when shifted left 6 and down 2.
9.) The function shown below is $f(x)$. Draw in $g(x)$ if $g(x)=f(x+2)-1$

hotes M2.2 - Reflections Over Axes and Vertical Stretches and Conmpressions

Reminder:

Before Reflection (x, y)	\longrightarrow	After Reflection in the x-axis: $(x,-y)$
After Reflection in the y-axis: $(-x, y)$		

1.) Graph the following function below. Then, graph two reflections: one over the x-axis and one over the y-axis. Determine the equation of each function.
$f(x)=(x-3)^{2}$

Equation after a reflection over the x-axis:

Equation after a reflection over the y-axis:

Summary:

Before Reflection $f(x)$	\longrightarrow	After Reflection in the x-axis:

	Vertical				
Vertical Dilation	Vertical Compression		Horizontal Dilation Stretch	Horizontal Compression	

Graph the following functions using their parent functions and your knowledge of vertical stretches and compressions.
2.) $g(x)=2 x^{2}$

4.) $g(x)=-2^{x}$

3.) $h(x)=\frac{1}{2} x^{2}$

5.) $h(x)=2^{-x}$

Vertical Dilation	Vertical Stretch	$k \cdot f(x), k>1$
	Vertical Compression	$k \cdot f(x)$, $0<k<1$

1.) Consider the graph of $f(x)$ below. Graph $g(x)=2 \cdot f(x)$ and $h(x)=0.5 f(x)$. Describe each transformation.

2.) Consider the graph of $f(x)$ below. Graph $a(x)=f(2 x)$ and $b(x)=f(0.5 x)$. Describe each transformation.

Graph the following functions using their parent functions and your knowledge of vertical and horizontal stretches and compressions.
3.) $g(x)=2^{3 x}$

5.) $g(x)=2|x|$

4.) $g(x)=3 \cdot 2^{x}$

6.) $\quad g(x)=|2 x|$

Notes 12.4: Systemns of Equertions

1.) Solve the following system of equations graphically.

$$
\begin{aligned}
& y=x^{2}-6 x+3 \\
& y=-2 x+3
\end{aligned}
$$

2.) Solve the following system of equations algebraically.
$y=x^{2}-6 x+3$
$y=-2 x+3$
3.) Solve the following system of equations algebraically.
$(x-2)^{2}+(y-1)^{2}=4$
$x+y=1$

