Unit I2 hotes

herture of and Gremsformertions of Functions

Gentertive Schedule

Day	Classwork	Assignment
Wed. 4/29	Finish Transformations of Graphs Activity	Video \#12.1 - Vertical and Horizontal Shifts
Thurs. 4/30 Fri. 5/1	P.S. \#12.1	Video \#12.2 - Reflections over Axes and Vertical Stretches/Compressions
Mon. 5/4	P.S. \#12.2	Video \#12.3 - Horizontal Stretches/Compressions
Tues. 5/5 Wed. 5/6	P.S. \#12.3	Video \#12.4 - Systems of Equations (including non-linear equations)
Thurs. 5/7	P.S. \#12.4	Finish problem set packet
Fri. 5/8 Mon. 5/11	Review for Test \#12	Review for Test \#12
Tues. 5/12	Test \#12	REVIEW!

Name: \qquad

s！xe－K ә૫ł ךnoqe		（ $\mathrm{X}-$ ）\ddagger
s！xe－x ә૫ł łnoqe		（x）${ }^{\text {－}}$

	$(x) \downarrow$ 」о чde」6 әчı	पग10．15	（0／X）\ddagger
	（x）ı ıО पdeı6 әцı	Ssodduos	（X0）\ddagger
	$(x) \downarrow$ ıО पdeı6 әч！	ssoıdulus	（x）\ddagger（ $0 / \mathrm{L}$
	$(x) \downarrow$ ！O पdeı6 әчł	प01017S	（x）！
			deı6 әцł uos pue

st！un 5 ¢ ${ }^{\text {ata }}$	（x）t ⿺o पdeı6 әч！れ！чs	（0－x）\ddagger
St！un 0 ¥ə		$(0+x) \ddagger$
st！un э pגemumop		0－（x）\dagger
st！un 5 paemdn		ग＋（x）\ddagger

sydeג פן suo！̣emıoısueג」

$$
f(x)=y
$$

notes 2 2. 1 - Vertical and Horizontal shifts
Let's summarize what we have learned in the transformations of graphs activity.

| Vertical | Shift Up | $-(x)+K$ |
| :---: | :---: | :---: | :---: | :---: |
| Shift | Shift Down | $f(x)-K$ |

Graph the following functions using their parent functions and your knowledge of vertical and horizontal shifts.

vertical shift up of 2 units shift left 2 units 3.) $k(x)=|x|-3$ Parent: $f(x)=1 x^{h \mid e}$ od) $=|x-3|$ Parent: $f(x)=1$ y

7.) Given the parent function $f(x)=x^{3}$, find the equation of the function that is the transformation of $f(x)$ when shifted up 7 and right 8 .

$$
f(x)=x^{3} \xrightarrow{ }
$$

$$
g(x)=
$$

8.) Given the function $f(x)=3(x-5)^{(2)}+4$, find the equation of the function that is the transformation of $f(x)$ when shifted left 6 and down 2 .

9.) The function shown below is $f(x)$. Draw in $g(x)$ if $g(x)=f(x+2)-1) \rightarrow(-1,2)$

(16)

- down 1

Motes l2.2 - Reflections Over Axes and Vertical Stretches and Compressions

Reminder:

1.) Graph the following function below. Then, graph two reflections: one over the x-axis and one over the y-axis. Determine the equation of each function.

Summary:

6

Graph the following functions using their parent functions and your knowledge of vertical stretches and compressions.

vertical compression of $5 \cdot f 1 / 2$ $h(x)=2^{-x}$
 Reflection ser the

Reflection over V-nvic

Vertical Dilation	Vertical Stretch	$k \cdot f(x), k>1$
	Vertical Compression	$k \cdot f(x)$, $0<k<1$

1.) Consider the graph of $f(x)$ below. Graph $g(x)=2 \cdot f(x)$ and $h(x)=0.5 f(x)$. Describe each transformation.

$$
\begin{aligned}
& \text { Vertical stretch } \\
& \text { with a sf of } 2
\end{aligned}
$$

vertical compression
w/ a sale factor of $\frac{1}{2}$.
2.) Consider the graph of $f(x)$ below. Graph $a(x)=f(2 x)$ and $b(x)=f(0.5 x)$. Describe each

Multhpy x by transformation. $f(2 x) \rightarrow K=\frac{1}{2}$

Horizontal compression wa sf. of $\frac{1}{2}$

x	$f(x)$	$0.5 f(x)$
-3	3	1.5
-2	2	1
-1	3	1.5
0	1	0.5
2	-4	-2
4	0	0

Horizontal stretch of scale factor 2
$f(0.5 x) \rightarrow K=\frac{1}{0.5} \quad K=2$

Graph the following functions using their parent functions and your knowledge of vertical and horizontal stretches and compressions.
3.) $g(x)=2^{3 x}$ parent: $f(x)=2^{x}$
4.) $g(x)=3 \cdot 2^{x}$ parent function $f(x)=2^{x}$

5.) $g(x)=2|x|$ parent: $f(x)=|x|$

x	$f(x)$	$2\|x\|$
-3	3	6
-2	2	4
-1	1	2
0	0	0
1	1	2
2	2	4
3	3	6

6.) $g(x)=|2 x|$ Parent: $f(x)=|x|$

Notes M2.4: Systenns of Equations
1.) Solve the following system of equations graphically. $y=x^{2}-6 x+3 \rightarrow$ Quad $\underline{\underline{y=-2 x+3}} \rightarrow$ Linear

$$
\begin{aligned}
& y=x^{2}-6 x+3 \\
& y=x^{2}-6 x+9+3-\frac{-6}{2}
\end{aligned}
$$

$$
\begin{aligned}
& y=x-6 x+1+3 \\
& \frac{y=(x-3)^{2}-6}{R 3} \downarrow 6 \\
& y=(0-3)^{2}-6=(-3)^{2}-6
\end{aligned}
$$

, $\{(0,3)$ and $(4,-5)\}$
2.) Solve the following system of equations algebraically.
$\begin{aligned} & y=x^{2}-6 x+3 \rightarrow \text { Quad } \\ & y=-2 x+3\end{aligned}$

$$
\begin{aligned}
& -2 x+3=x^{2}-6 x+3 \\
& 0=x^{2}-4 x \leftarrow \\
& 0=x(x-4) \\
& x=0 \quad x=4 \\
& y=-2 \overline{x+3} \\
& y=-2 x+3 \\
& y=-2(0)+3 \\
& y=-2(4)+3 \\
& y=-8+3 \\
& (0,3) \\
& y=-5 \quad(4,-5) \\
& \sin 2),(4-5)
\end{aligned}
$$

3.) Solve the following system of equations algebraically.
$(x-2)^{2}+(y-1)^{2}=4 \longrightarrow$
$\frac{x+y=1 T}{y-1-x}$

$$
\begin{aligned}
& (x-2)^{2}+(y-1)^{2}=4 \\
& (x-2)^{2}+(x-x-1)^{2}=4
\end{aligned}
$$

$$
(x-2)^{2}+x^{2}=4
$$

$x^{2}-4 x+4+x^{2}=4$

$$
2 x^{2}-4 x+4=4
$$

$$
2 x^{2}-4 x=0
$$

$$
\begin{aligned}
& \frac{2 x(x-2)}{x=0}=0 \\
& x=2
\end{aligned}
$$

$$
\begin{array}{rr}
x+y=1 & x+y=1 \\
0+y=1 & 2+y=1 \\
y=1 & y=-1 \\
\{\{(0,1)+(2,-1)\}
\end{array}
$$

