Unit I Notes

Exponents

Tentative Schedule

Day	Date	Class Work	Assignment	
1	Wed. 9/3 Thurs. 9/4	Problem Solving Group Work	Watch Video #1.1 – Exponential Notation, the Product of Powers and the Quotient of Powers	
2	Fri. 9/5	P.S. #1.1	Watch Video #1.2 – The Power of a Power	
3	Mon. 9/8 Tues. 9/9	P.S. #1.2	Watch Video #1.3 - Zero and Negative Exponents	
4	Wed. 9/10	Quiz #1.1 P.S. #1.3	Finish P.S. #1.3	
5	Thurs. 9/11 Fri. 9/12	Activity	Review for Test #1	
6	Mon. 9/15	Quiz #1.2 Review for Test #1	Study	
7	Tues. 9/16 Wed. 9/17	Test #1	Watch Video #2.1	

Name:

Notes I.I - Exponential Notation and Product/Quotient of Powers

Examples involving exponential notation. Also, identify the base and exponent in each expression.

1.) $5 \times 5 \times 5 \times 5 \times 5 \times 5 = \bigcirc \varphi$

Base: 5 Exponent: 6

2.) $\frac{9}{7} \times \frac{9}{7} \times \frac{9}{7} \times \frac{9}{7} = \left(\begin{array}{c} \boxed{3} \\ \boxed{3} \end{array} \right)$

Base: 9/7 Exponent: 4


3.) $\left(-\frac{4}{11}\right)^3 = \frac{-21}{11} \times -\frac{21}{11} \times -\frac{1}{11}$

Did you notice that parentheses are used in 2, 3, and 4? Why do you think there are parentheses?

To show the entire number that is the base.

The number x^n is called _____ raised to the _____ power, ____ is the **exponent** and _____ is the **base.**

Vocabulary

Base: $\frac{-2}{8}$ Exponent: 6

5.) $3.8^4 = (3.8)(3.8)(3.8)$ Base: 3.8 Exponent: 4

3

Try these exercises on your own. Then, compare with your partner.

Exercise 1

$$\underbrace{4 \times \cdots \times 4}_{7 \text{ times}} =$$

Exercise 6

$$\frac{\frac{7}{2} \times \dots \times \frac{7}{2}}{\frac{21 \text{ times}}{2}} = \left(\frac{7}{2}\right)$$

Exercise 2

$$\underbrace{3.6 \times \cdots \times 3.6}_{times} = \underbrace{3.6^{47}}$$

$$\underbrace{(-13) \times \cdots \times (-13)}_{6 \text{ times}} = \left(- / 3 \right)$$

Exercise 3

$$\underbrace{(-11.63) \times \cdots \times (-11.63)}_{34 \text{ times}} = \left(-\left| \left| \left| \left| \right| \right| \right| \right]$$

Exercise 8

$$\underbrace{\left(-\frac{1}{14}\right) \times \cdots \times \left(-\frac{1}{14}\right)}_{10 \text{ times}} = \underbrace{\left(-\frac{1}{14}\right)}_{10 \text{ times}}$$

Exercise 4

$$\underbrace{12 \times \cdots \times 12}_{\text{times}} = 12^{15}$$

Exercise 9
$$\underbrace{x \cdot x \cdots x}_{185 \text{ times}} =$$

Exercise 5
$$(-5) \times \cdots \times (-5) = (-5)$$
10 times

Exercise 10

$$\underbrace{x \cdot x \cdots x}_{times} = x^n$$

Exercise 11

Will these products be positive or negative? How do you know?

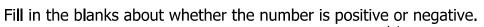
 $\underbrace{(-1)\times(-1)\times\cdots\times(-1)}_{12\ times}=(-1)^{12}$

Exponent is even

$$\underbrace{(-1) \times (-1) \times \cdots \times (-1)}_{13 \text{ times}} = (-1)^{13}$$

Exercise 12

Is it necessary to do all of the calculations to determine the sign of the product? Why or why not?


 $\underbrace{(-5) \times (-5) \times \cdots \times (-5)}_{95 \text{ times}} = (-5)^{95}$

No, it's not necessary; all you have to do is look at the exponent. The product $(-1.8) \times (-1.8) \times \cdots \times (-1.8) = (-1.8)^{122}$ is negative because the exponent is

 $(-1.8) \times (-1.8) \times \cdots \times (-1.8) = (-1.8)^{122}$

indult is positive

Exercise 13

If *n* is a positive even number, then $(-55)^n$ is 20514000

If *n* is a positive odd number, then $(-55)^n$ is $\underline{n ega}$

Exercise 14

Josie says that $(-15) \times (-15) \times (-15) \times (-15) \times (-15) \times (-15) = -15^6$. Is she correct? How do you

know?

NO, She is not correct because -156 15 regative, while her product should

Expand and evaluate $\left(-\frac{3}{4}\right)$

1.) Expand 10⁶.

10.10.10.10.10

2.) Expand 10^3 .

10.10.10

3.) Expand $10^6 \cdot 10^3$. What do you notice?

10.10.10.10.10.10.10.10.10.

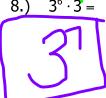
4.) Expand a^4 .

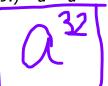
a.a.a.

5.) Expand a^5 .

(1.a.a.a.a.a

6.) Expand $a^4 \cdot a^5$. What do you notice?

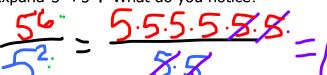

a⁴·a⁵ ·<u>a·a·a·a·a</u>= a⁹


When you find the product of two algebraic expressions with the same base, you can <u>Cool</u> their exponents and use this exponent with the Same base. M+n

$$a^m \cdot a^n =$$

Simplify each expression. Write your answer in exponential notation.

 $(-4)^2 \cdot (-4)^3 =$ 7.)


10.) Expand 5⁶.

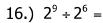
11.) Expand 5².

12.) Expand $5^6 \div 5^2$. What do you notice?

13.) Expand y^7 .

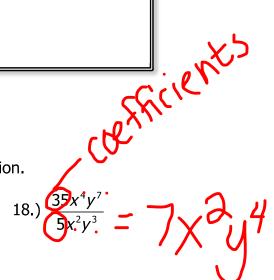
14.) Expand y^4 .

y. y. y. y. y. y. y


15.) Expand $\sqrt{2} + \sqrt{4}$. What do you notice?

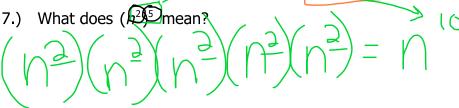
When you find the quotient of two algebraic expressions with the same base, you can their exponents and use this exponent with the same base.

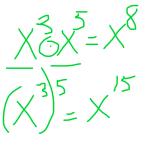
$$a^m \div a^n =$$


Simplify each expression. Write your answer in exponential notation.

17.)
$$(-7)^5 \div (-7) =$$

7


Simplify each expression. Write your answer in exponential notation.

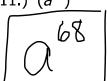

- 4.) $\frac{6^{7} \cdot 6^{3} \cdot 6^{2}}{6^{6} \cdot 6^{4} \cdot 6^{5}} \frac{6^{12}}{6^{12}}$
- 5.) $\frac{b^5 \cdot 4a^4 \cdot 9a^3}{2a^2 \cdot b^2 \cdot 6a^2}$

6.) What does (mean?

what do you notice? When you have a power raised to a power raised to a power by the exponents What do you notice?

> When you raise a power to a power, keep the base and multiply the exponents.

$$(a^m)^n =$$


Simplify each expression. Write your answer in exponential notation.

9.)

10.) $((-2)^5)^8$

11.) $(a^{17})^4$

Notes I.3 - Zero and Negative Exponents

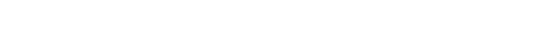
1.) Use the power of a quotient property to simplify each expression. Write the quotient as an exponent.

Expression	Exponent
$\frac{3^{5}}{3^{2}}$	3 ³
$\frac{3^5}{3^3}$	32
$\frac{3^5}{3^4}$	3'
3 ⁵ 3 ⁵	3°

subtract exponents

What expression did you write for $\frac{3^5}{3^5}$? What exponent did you use?

2.) Using factored form, find the value of $\frac{3^5}{3^5}$.


(1)32=(1)3·3

3.) Based on your findings, what can you conclude about the value of 3°7

4.) Make a prediction about the value of any number raised to the zero power.

Anything raised to the 0th power.

5.) Use a calculator to check your prediction for several numbers. Is your prediction right?

A nonzero number raised to the zero power is equal to $\underline{}^0 = \underline{}^0 = \underline{}^0$.

Simplify

each

$$7^{\circ}=1$$
 $7'=-$

expression and evaluate where applicable.

6.)
$$7^{2} \cdot 7^{0} \rightarrow 7^{3} \cdot 1 = 7^{3}$$

$$7 \cdot 7 \cdot 7 = 7^{3}$$

7.)
$$3 \cdot 10^2 + 2 \cdot 10^1 + 8 \cdot 10^0$$

8.)
$$\frac{4^2 \cdot 4^6}{4^8} = \frac{4^9}{4^8} = 4^6 = 1$$

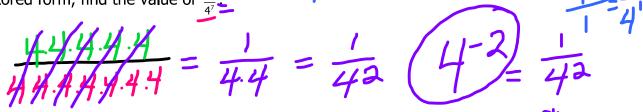
9.)
$$(a^{4} \div a^{0}) a^{3} = 0$$

$$(\alpha^{4} \div 1) \cdot \alpha$$

$$\alpha^{4} \cdot \alpha^{3} = \alpha^{7}$$

10.) Use the quotient of powers property to simplify each expression. Write the quotient in exponential notation.

	Expression	Exponent
	$\frac{4^5}{4^3}$	4 ²
" Smill	4 ⁵ • •	4'
Jones Harris	$\frac{4^5}{4^5}$	40(=1)
5-6	$\frac{4^5}{4^6}$	4
7	$\frac{4^5}{4^7}$	(4-2)



What expression did you write for $\frac{4^5}{4^6}$? What expenent did you use?

4 exponent:-1

11.) Using factored form, find the value of $\frac{4^5}{4^6}$.

12.) Using factored form, find the value of $\frac{4^5}{4^7}$

$$a^{-n} = \frac{1}{2}$$

X-111p xrecipsocal

13.) How would you write a using a positive exponent?

Simplify each expression. Write your answer using a positive exponent.

14.) 13 ⁻⁴ ·13 ⁷	133	
	1 121	-3
$\frac{1}{101}$.13	1 13 =	=13°
139	- 13'	

$$\frac{48}{40} = \frac{48}{40} = \frac{1}{40}$$

$$\frac{1}{40} = \frac{1}{40}$$

$$\frac{1}{40} = \frac{1}{40}$$

15.)
$$\frac{x^{-1}}{x^4}$$

1.)
$$x^{-7} \div x^{-4}$$

$$-7 - 4 - 3$$

$$-3 - 1 - 3$$

$$-3 - 1 - 3$$
1.) $14a^{-5} \div (7a \cdot 2a^{-4})$

Simplify each expression and evaluate where applicable.

20.)
$$\frac{(-6)^3}{(-6)^4} = (-6)^3 = (-6$$