Unit 2 hotes

Scientific hotertion

hampe:

Unit 2 Checklist

P.S. \#2. 1 \qquad P.S. \#2.2
P.S. \#2.3 \qquad P.S. \#2.4
P.S. \#2.5 \qquad P.S. \#2.6

Quiz \#2 Corrections

Tentartive Schedule

Dery	Detée	Gopic	Assignment
Thurs. 9/18	Test \#1	Watch Video \#2.1 with Notes - Understanding	
Scientific Notation			

MathATube.com to gether we-11 learn

Motes 2.4 - understanding scientific Motertion
What is the point of using scientific notation?

Tell whether each number is written correctly in scientific notation. If it is incorrectly written, state the reason.
1.) A horse-chestnut has a diameter of about $2 \cdot 10^{\circ}$ centimeters.

2.) Neptune is about $4.488 \cdot 10^{9}$ kilometers from the sun.

3.) The approximate wavelength of infrared light is $0.01 \cdot 10^{-5}$ meter. no the coefficient is too small
4.) A football field (excluding zones) is $10 \cdot 10^{1}$ yards long.
no-the coefficient is too large.

Write each number in scientific notation.
5.) . 427.7

7.) 8562.1

$$
\begin{aligned}
& 8.5621 \cdot 1000 \\
& 8.5621 \cdot 10^{3}
\end{aligned}
$$

6.) 0.007
9.) $7.1 \cdot 10^{3}$
$7.1 \circ 1000$
7100
11.) $9 \cdot 10^{4}$

10.) $8.12 \cdot 10^{-3}$.

$$
0.00812
$$

$$
\text { 12.) } 2.5 \cdot 10^{-2}
$$

$$
2.5 \cdot \frac{1}{100}
$$

Identify the greater number in each pair of numbers. Justify your reasoning.
13.) $5.6 \cdot 10^{2}$ an $2.1 \cdot 10^{3}$

Larogr exponent means it was multiplied by ten one more time.
14. $3.4 \cdot 10^{-1}$ and $1.1 \cdot 10^{-1}$
same exponent-so look at the coefficient - which is larger.

Motes 2.2 - Adjusting Numbers to Scientific Notation
Find the products or the quotients below.
1.) $5.83 \cdot 10$
2.) $489 \cdot 100$
58.3
3.) $102.4 \cdot 1000$

102,400
5.) $93.5 \div 100$
0.935
6.) $2.935 \div 1000$
0.002935

Rewrite each number below so it is in scientific notation.
7.) 18,5
8.) 957.3

$$
1.85 \cdot 10^{\prime}
$$

9.) .081
10.) 0.077

$$
8.1 \cdot 10^{-1}
$$

$$
7.7 \cdot 10^{-2}
$$

Rewrite each of the numbers below so they are written in scientific notation.
11.) $45.7 \cdot 10^{8}$

$$
\begin{gathered}
4.57 \cdot 10^{1} \cdot 10^{8} \\
4.57 \cdot 10^{9}
\end{gathered}
$$

13.) $5821 \cdot 10^{-7}$ when multiplying.)
12.) $\underline{0.085} \cdot 10^{5}$

$$
\frac{8.5 \cdot 10^{-2} \cdot 10^{5}}{\frac{8 \cdot 5 \cdot 10^{3}}{0.000353 \cdot 10^{-4}}}
$$

$3.53 \cdot 10^{-4} \cdot 10^{-4}$
$3.53 \cdot 10^{-8}$

$$
\begin{aligned}
& \text { 2.) } \begin{array}{l}
4.1 \cdot 10^{2} 1 \\
4.1 \cdot 10^{3} \cdot 10^{3} \\
0.41 \cdot 10^{3}
\end{array}, ~
\end{aligned}
$$

Steps to Multiplying Numbers in Scientific Notation

1. Multiply
2. Add \qquad the coefficients.
3. Adjust the exponents. the result to scientific notation.

Steps to Dividing Numbers in Scientific Notation

1. Divide the coefficients.
2. Subtract the exponents.
3. \qquad the result to scientific notation.

3.) | $\left(43 \cdot 10^{9}\right) \cdot\left(7 \cdot 10^{4}\right)$ |
| :--- |
| $387 \cdot 10^{13}$ |
| $3.87 \cdot 10^{2} \cdot 10^{3}$ |
| $3.87 \cdot 10^{15}$ |

$\frac{\text { Steps }}{46}$
$5 \sqrt{230}$
$\frac{-20}{30}$
$-\frac{30}{0}$
2) $8-4$
$8+4=12$

2) $-8+3=5$

Steps $\begin{array}{r}0.721 \\ \frac{5.250}{3.7500} \\ \frac{364}{110} \\ \frac{104}{6} \\ \frac{52}{8} \\ \vdots\end{array}$
2) $9-2=7$

1. Readjust the numbers so the exponents are equal
2. Add or subtract the coefficients
3. Adjust the result to scientific notation.
1.) $\left(2.45 \cdot 10^{7}\right)+\left(3.8 \cdot 10^{8}\right)-\exp : 7$

$$
\begin{aligned}
& 2.45 \cdot 17+3.8 \cdot 10 \cdot 10 \\
& \begin{array}{rr}
2.45 \cdot 10^{7}+38 \cdot 10^{7} & 38.00 \\
40.45 \cdot 10^{7} & +2.45 \\
\hline 40.45
\end{array} \\
& 4.045 \cdot 10^{\prime} \cdot 10^{7}=4.045 \cdot 10^{7}
\end{aligned}
$$

3.) $\left(1.4 \cdot 10^{-5}\right)-\left(5.67 \cdot 10^{-6}\right)-\exp :-5$

$$
\begin{array}{c|c}
\frac{1}{3} \mathbf{3} 40100 & 1.4 \cdot 10^{-5}-5.67 \cdot 10^{-1} \cdot 10^{-1} \\
0.567 & 1.4 \cdot 100^{-5}-0.567 \cdot 10^{5} \\
0.833 \cdot 833 \cdot 10^{-5} \\
8.33 \cdot 10^{-1} \cdot 10^{-5} \\
8.33 \cdot 10^{-6}
\end{array}
$$

$$
\begin{aligned}
& \text { 4.) } 4.801 \cdot 10^{3}-2.2 \cdot 10^{7} \text {-exp: } 7
\end{aligned}
$$

$$
\begin{aligned}
& -2.199599 \cdot 10^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2.456 \cdot 10^{3} \cdot 10^{8}+6.0034 \cdot 10^{8}}{\substack{.002456 \cdot 10^{8}+6.0034 \cdot 10^{8}}} \begin{array}{l}
6.003400 \\
+.002456 \\
6.005856
\end{array}
\end{aligned}
$$

notes 2.5 - Word Problems with Scientific notation
Determine operation, first
1.) The outer wall of a large tourist attraction in Cambodia is about $1.1 \cdot 10^{3}$ meters long and
$8.1 \cdot 10^{2}$ meters wide. Find the approximate area enclosed by the outer wall. operation:

$$
\begin{aligned}
A & =l \cdot w \\
& =\left(1.1 \cdot 10^{3}\right)\left(8.1 \cdot 10^{2}\right) \\
& =8.91 \cdot 10^{5}
\end{aligned}
$$ mull.

$$
\begin{array}{r}
1.1 \\
\frac{8.1}{11} \\
880 \\
\hline 8.91
\end{array}
$$

2.) The planet Mercury has an approximate mass of $3.3 \cdot 10^{23}$ kilograms. Mars has a mass of about $6.4 \cdot 10^{23}$ kilograms. How many times as great as the mass of Mercury is the mass of Mars? Round the coefficient to the nearest tenth. Operation: division

1.9 times larger
3.) Ocean is $6.4 \cdot 10^{7}$ square miles. The area of the Arctic Ocean is about $5.4 \cdot 10^{4}$ square miles.
a.) Find the approximate sum of the areas of the two oceans. (add)

$$
\begin{array}{l|l|}
6.4 \cdot 10^{7}+5.4 \cdot 10^{4} \\
6.4 \cdot 10^{7}+5.4 \cdot 10^{-3} \cdot 10^{7} \\
6.4 \cdot 10^{7}+0.0554 \cdot 10^{7} & +\frac{6.4000}{6.4054}
\end{array}
$$

b.) About how much larger is the area of the Pacific Ocean than the area of the Arctic Ocean?

$$
\begin{array}{l|l|}
6.4 \cdot 10^{7}+5.4 \cdot 10^{4} \\
6.4 \cdot 10^{7}-5.4 \cdot 10^{-3} \cdot 10^{7} & -\frac{6.449910}{6.0054} \\
6.4 \cdot 10^{7}-0.055^{3} \cdot 10^{7} & 6.3946
\end{array} \begin{aligned}
& 6.3946 \cdot 10^{7} \mathrm{mi}^{2} \text { larger } \\
& \text { Pacific is much larger }
\end{aligned}
$$

4.) A blue whale has a mass of about $190,000,000$ grams. The mass of a whale shark is than
approximately $2.6 \cdot 10^{4}$ kilograms. $\quad \rightarrow 190,000 \mathrm{Kg}=1.9 \cdot 10^{5} \mathrm{Kg}$

$$
190,000 \mathrm{Kg}=1.9 \cdot 10^{5} \mathrm{Kg}
$$

Arctic.
a.) What is the approximate sum of the masses of the blue whale and whale shark?

$$
\begin{aligned}
& 1.9 \cdot 10^{5}+2.6 \cdot 10^{4} \\
& 1.9 \cdot 10^{5}+2.6 \cdot 10^{-1} \cdot 10^{5}<2.16 \cdot 10^{5} \mathrm{~kg} \\
& 19 \cdot 10^{5}+0.26 \cdot 10^{5}
\end{aligned}
$$

b.) Given that the mass of white rhinoceros is about 4,850 kilograms, find the combined mass of the three animals.

$$
\begin{aligned}
& 2.16 \cdot 10^{5}+4.850 \cdot 10^{3} \\
& 2.16 \cdot 10^{5}+4.850 \cdot 10^{-2} \cdot 10^{5} \\
& 2.16 \cdot 10^{5}+.0485 \cdot 10^{5} \\
& 2.2085 \cdot 10^{5} \mathrm{~kg}
\end{aligned}
$$

