Unit 4 Notes

Systems of Equations

Gentative Schedule

Day	Date	Classwork	Assignment
	Thurs. 10/16 (S)	Test #3	Video #4.1 with Notes – Solving Systems of
	Fri. 10/17 (R)		Equations by Graphing
1	Mon. 10/20 (all)	Problem Set: 1 – 9	Video #4.2/4.3 with Notes – Solving
			Systems of by Substitution and Elimination
2	Tues. 10/21 (S)	Droblom Sot: 10 - 20	Video #4.3 with Notes – Applications of
	Wed. 10/22 (R)	PIODIeIII Set. 10 – 29	Systems of Equations
3	Thurs. 10/23 (all)	Quiz #4	Finish Problem Set 30 – 49
		Problem Set: 30 – 49	
4	Tues. 10/28 (all)	Special Cases of	Complete Unit 4 Problem Sets
		Systems of Equations	
5	Wed. 10/29 (S)	Poviow for Tost #4	Poviow for Tost #4
	Thurs. 10/30 (R)		
6	Fri. 10/31 (all)	Test #4	

Name:_____

Notes 4.1 - Solving Systems Graphically

1.) Circle all ordered pairs (x, y) that are solutions to the equation 4x - y = 10.

$$(3,2)$$
 $(2,3)$ $(-1,-14)$ $(0,-10)$ $(3,4)$

- 2.) Find another solution to 4x y = 10.
- 3.) How many solutions are there to 4x y = 10?

System of Equations: _____

- 6.) Two cyclists are traveling along a track in the same direction. Their motions are described by the linear equations d = 10t and d 8t = 2, where t hours is the time and d miles is the distance from point A on the track.
 - a.) Solve the system of linear equations using the graphing calculator.

b.) When will the cyclists meet?

7.) All the employees of a garden center are given a \$0.40 per hour raise each year. You make \$7.15 per hour after three years as an employee. Write a linear equation that models your salary per hour, S, in terms of the number of years, N, you have worked at the garden center. Then find your hourly salary after 6 years.

Notes 4.2 - Solving Systems Using Substitution

Given the following system of equations, solve for x and solve for y.

3x - 2y = 4x = 2

Solve the following system of equations.

y = 3x2x + 5y = 38

Solve the following system of equations.

x = 2y + 24x + 3y = 41

List of Steps to Solve a System of Equations:

3x - 2y = 11x + 2y = 9

Steps	
 Isolate a variable in one equation. Look for the easiest variable to isolate! 	
2.) <i>Substitute</i> that into the other equation.	
3.) Now that you only have one variable in the equation, solve it.	
 Plug the answer into any equation to find the other variable. 	
5.) Write your answer as a coordinate.	
6.) Check the solution in <i>both</i> equations.	

6 Unit 4 Notes – Algebra Enriched Systems of Equations

Notes 4.3 - Solving Systems Using Elimination

- Just like substitution, we want to end up with an equation with only ______ variable.
 Using this method, we ______ a variable by ______ the equations.
- Make sure the signs are _____.
- Make sure your variables ______ before you add!

x + 2y = 8x - 2y = 4

You are going to work with your partners to determine a possible solution to solving the system of equations above. It does not matter if your answer is right or wrong. What matters it that you **persevere and you take risks**.

4x + 3y = -15x + 4y = 1

You are going to work with your partners to determine a possible solution to solving the system of equations above. It does not matter if your answer is right or wrong. What matters it that you **persevere and you take risks**.

- 5.) At a baseball game, the players consume 193 gallons of water when the temperature is 50°.When the temperature is 60°, they consume 233 gallons of water.
 - a. Write a linear function to model the relationship between gallons of water consumed and the temperature.

b. Explain the meaning of the slope in the context of the problem*

Notes 4.4 - Systems of Equations with Word Problems

Do not forget to write ______

ļ

 Alexa purchased 12 pens and 14 notebooks for \$20. Hannah bought 7 pens and 4 notebooks for \$7.50. Find the price of one pen and the price of one notebook, algebraically.

2.) Tyler has a collection of grasshoppers and crickets. He has 561 insects in all. The number of grasshoppers is twice the number of crickets. Find the number of *each* type of insect that he has.

3.) A total of 600 tickets were sold for a concert. If the tickets sold in advance cost \$25 each and the tickets sold at the door cost \$32 each, and \$16,309 worth of tickets was sold, how many of each type of ticket was sold?

Notes 4.5 - Special Cases of Systems of Equations

Warm-up: Please solve the following equations.

You have learned to find the unique solution to a system of linear equations, when it exists. However, not every system of linear equations has a unique solution.

1.) 3(x+4) = 2x + 17 + x - 52.) 2(x+5) + 3x = 5x + 14

3.) With your partners, please solve the following system of equations using *substitution*.

2x + y = 14x + 2y = 4

4.) With your partners, please solve the following system of equations using *elimination*.

2x + y = 14x + 2y = 4

5.) With your partners, please solve the following system of equations by *graphing*.

2x + y = 1	
4x + 2y = 4	

6.) What happened when you tried to solve the equation with all three methods?!

7.) With your partners write a **thorough explanation** why this happened algebraically.

8.) With your partners write a **thorough explanation** why this happened graphically.

9.) With your partners, please solve the following system of equations using *substitution*.

x + 2y = 22x + 4y = 4

10.) With your partners, please solve the following system of equations by *graphing*.

- 11.) With your partners, please solve the following system of equations using *elimination*.
 - x + 2y = 22x + 4y = 4

12.) What happened when you tried to solve the equation with all three methods?!

.)	With your partners write a thorough explanation why this happened with algebraically.
)	With your partners write a thorough explanation why this happened graphically.
	Summary:
	There is no solution when
	Example:
	There is one unique solution when
	Example:
	There are infinite solutions when
	There are infinite solutions when

Example: