Unit 6 Notes

Factoring

Tentative Schedule

Day	Classwork	Assignment
Mon. $11 / 24$ (all)	Test\#5	Video \#6.1 with Notes: Factoring by GCF
Tues. $11 / 25(\mathrm{~S})$ Mon. $12 / 1$ (R)	$1-17$	Video \#6.2 with Notes:
Factoring Trinomials		

Name:

Heyo-mOH Sullotoey

Notes 6.1- Factoring by GCF

Find the GCF of the following. Then divide each number by the GCF.
1.) 18,24

GCF: \qquad
Divided by the GCF: \qquad \rightarrow \qquad
2.) 90,315

GCF: \qquad
Divided by the GCF: \qquad
\qquad
3.) x^{8}, x^{7}, x^{6}

GCF: \qquad
Divided by the GCF: \qquad
\qquad
\qquad
4.) $9 a^{4} b^{3}, 15 a^{3} b^{2}, 3 a^{2} b^{4}$

GCF: \qquad
Divided by the GCF: \qquad
\qquad
\qquad
5.) Distribute. $3 x\left(x^{3}+8 x^{2}+4\right)$

1. Find the \qquad _.
2. \qquad the expression by the \qquad .
3. Write the answer as \qquad . (Undistribute)

Try these.
6.) $-5 x^{3} y+25 x$
7.) $4 x^{2} y+7 x y$

8.) Solve for a. $5 a+10 a x=4 b$
9.) Solve for y. $3 x y+9 y=14$

Notes 6.2 - Factoring Trinomials by Trial-and-Error

General form of a quadratic expression: $a x^{2}+b x+c$
Multiply each expression below:
1.) $(3 x+4)(x+2)$
2.) $(5 x+3)(2 x+1)$

When you factor, you are "un-distributing" the trinomial into the product of two binomials. Try the following examples:
3.) $3 x^{2}-2 x-8$
4.) $3 x^{2}+x-14$
5.) $x^{2}+x-20$
6.) $-2 x^{2}+3 x+9$

Notes 6.3 - Factoring Trinomials by Grouping

Multiply the following binomials: $(3 x+2)(4 x-7)$

$$
\text { Example: } 6 x^{2}+5 x-6
$$

A. Consider the product (a)(c):
B. List out all possible factor pairs of $(a)(c)$:
C. Find the pair that satisfies the requirements of the product-sum method (i.e., a pair of numbers whose product equals ac and whose sum is b).
D. Rewrite the expression with the same first and last term but with an expended b term using that pair of factors as coefficients:
E. We now have four terms that can be entered into a tabular model or factored by grouping.
F. Pair the first two and the last two. Factor out a common factor for each group.

Try the following examples:
1.) $3 x^{2}-2 x-8$
3.) $x^{2}+x-20$
2.) $3 x^{2}+x-14$
4.) $-2 x^{2}+3 x+9$

Notes 6.4 - Special Cases of Factoring

Multiply the following binomials together:
1.) $(x-4)(x+4)$
2.) $(3 x+5)(3 x-5)$

Factor:
3.) $x^{2}-9$
4.) $-9+x^{2}$
5.) $x^{2}+16$
6.) $x^{4}-81$

Multiply the following binomials together:
7.) $(x+4)(x+4)$
8.) $(3 x+5)(3 x+5)$

Factor.
9.) $x^{2}+6 x+9$
10.) $25 x^{2}+60 x y+36 y^{2}$
11.) $x^{2}-14 x+49$
12.) $x^{2}-10 x-25$

Notes 6.5 - Factoring Completely

Try these steps in the following order.
A. Is there a GCF?
B. Does it look a Difference of Derfect Squares?
C. Can I factor a trinomial by grouping or trial-and-error?

D. Is my final answer completely factored?

Factor completely.
1.) $50 x^{2}-242 y^{4}$
2.) $c^{3}+2 c^{2}-35 c$
3.) $9 x^{2}-78 x-27$
4.) $x^{2} y^{2}+7 x^{2} y-60 x^{2}$

