Unit 6 Notes Factoring

Tentative Schedule

Day	Classwork	Assignment	
Mon. 11/24 (all)	Test #5	Video #6.1 with Notes: Factoring by GCF	
Tues. 11/25 (S) Mon. 12/1 (R)	1 – 17	Video #6.2 with Notes: Factoring Trinomials	
Tues. 12/2 (all)	18 - 37	Video #6.3 with Notes: Factoring Trinomials by Grouping	
Wed. 12/3 (S) Thurs. 12/4 (R)	38 - 58	Video #6.4 with Notes: Factoring Special Cases of Binomials/Trinomials	
Fri. 12/5 (all)	59 - 81	Video #6.5 with Notes: Factoring Completely	
Fri. 12/5 (R) Mon. 12/8 (S)	Quiz #6 during Lab Class		
Mon. 12/8 (S) Tues. 12/9 (R)	82 - 100	Finish Practice Packet	
Wed. 12/10 (all)	Review for Test #6	Review for Test #6	
Thurs. 12/11 (9) Fri. 12/12 (R)	Test #6	TBA	

Factoring Flow-Chart

Notes 6.1 - Factoring by GCF

anninen anninen anninen anninen anninen G	PCF stands for:	le de indicatorio de la la decenió de la	
Prime:		Composite:	
To find the GCF of a set of number			

Find the GCF of the following. Then divide each number by the GCF.

1.) 18, 24

GCF: _____

Divided by the GCF: _____, ____

2.) 90, 315

GCF:

Divided by the GCF: _____, ____

GCF: _____

Divided by the GCF: ______, _____, ______

4.) $9a^4b^3$, $15a^3b^2$, $3a^2b^4$

GCF: _____

Divided by the GCF: ______, _____, _____

5.) Distribute. $3x(x^3+8x^2+4)$

Steps to	Factoring	by	GCF:
----------	-----------	----	------

- 1. Find the _____.
- 2. _____ the expression by the ______.
- 3. Write the answer as ______. (Undistribute)

Try these.

6.)
$$-5x^3y + 25x$$

7.)
$$4x^2y + 7xy$$

8.) Solve for a.
$$5a + 10ax = 4b$$

9.) Solve for y.
$$3xy + 9y = 14$$

Notes 6.2 - Factoring Trinomials by Trial-and-Error

General form of a quadratic expression: $ax^2 + bx + c$

Multiply each expression below:

1.)
$$(3x+4)(x+2)$$

2.)
$$(5x+3)(2x+1)$$

When you factor, you are "un-distributing" the trinomial into the product of two binomials. Try the following examples:

3.)
$$3x^2 - 2x - 8$$

4.)
$$3x^2 + x - 14$$

5.)
$$x^2 + x - 20$$

6.)
$$-2x^2 + 3x + 9$$

Notes 6.3 - Factoring Trinomials by Grouping

Multiply the following binomials: (3x+2)(4x-7)

Example: $6x^2 + 5x - 6$

- A. Consider the product (a)(c):
- B. List out all possible factor pairs of (a)(c):

- C. Find the pair that satisfies the requirements of the product-sum method (i.e., a pair of numbers whose product equals ac and whose sum is b).
- D. Rewrite the expression with the same first and last term but with an expended b term using that pair of factors as coefficients:

E. We now have four terms that can be entered into a tabular model or factored by grouping.

F. Pair the first two and the last two. Factor out a common factor for each group.

Try the following examples:

1.)
$$3x^2 - 2x - 8$$

2.)
$$3x^2 + x - 14$$

3.)
$$x^2 + x - 20$$

4.)
$$-2x^2 + 3x + 9$$

Notes 6.4 - Special Cases of Factoring

Multiply the following binomials together:

1.)
$$(x-4)(x+4)$$

2.)
$$(3x+5)(3x-5)$$

General form for a difference of perfect squares:

$$a^2 - b^2 = (a - b)(a + b)$$

Factor:

3.)
$$x^2 - 9$$

4.)
$$-9+x^2$$

5.)
$$x^2 + 16$$

6.)
$$x^4 - 81$$

Multiply the following binomials together:

7.)
$$(x+4)(x+4)$$

8.)
$$(3x+5)(3x+5)$$

General form for squaring a binomial:

$$(a+b)(a+b) = a^2 + 2ab + b^2$$

Factor.

9.)
$$x^2 + 6x + 9$$

$$10.) \quad 25x^2 + 60xy + 36y^2$$

11.)
$$x^2 - 14x + 49$$

12.)
$$x^2 - 10x - 25$$

Notes 6.5 - Factoring Completely

Try these steps in the following order.

- A. Is there a GCF?
- B. Does it look a Difference of Perfect Squares?
- C. Can I factor a trinomial by grouping or trial-and-error?
- D. Is my final answer completely factored?

Factor completely.

1.)
$$50x^2 - 242y^4$$

2.)
$$c^3 + 2c^2 - 35c$$

3.)
$$9x^2 - 78x - 27$$

4.)
$$x^2y^2 + 7x^2y - 60x^2$$