Unit 6 Notes
Transformations and Angle Relationships

Name:

Tentative Schedule

Day	Classwork	Assignment	
Mon. 1/26	Test #5	Watch Video #6.2 and Complete Notes 6.2 Reflections – page 5	
Tues. 1/27 Wed. 1/28	P.S. #6.2 - Reflections	Watch Video #6.3 and Complete Notes 6.3 Dilations – page 7	
Thurs. 1/29	P.S. #6.3 - Dilations	Watch Video #6.4 and Complete Notes 6.4 Translations — page 8	
Fri. 1/30 Mon. 2/2	P.S. #6.4 – Translations	Watch Video #6.5 and Complete Notes 6.5 Rotations — page 9	
Tues. 2/3	P.S. #6.5a - Rotations	Finish P.S. #6.5a - Rotations	
Wed. 2/4 Thurs. 2/5	Symmetries P.S. #6.1 - Symmetries	P.S. #6.5b - Mixed Transformations	
Fri. 2/6	Quiz #6 P.S. #6.5c - Review	Finish P.S. #6.5c — Review	
Mon. 2/9 Tues. 2/10	Begin Angle Relationships Catch-up Day	Watch Video #6.6 and Complete Notes 6.6 Angle Relationships (Part 2) – page 12	
Wed. 2/11	P.S. #6.6 - Angle Relationships	Video #6.7 and Complete Notes 6.7 Similarity vs. Congruence — page 13	
Thurs. 2/12 Fri. 2/13	P.S. #6.7 - Similarity vs. Congruence	Catch-up on checklist	
Mon. 2/23	Identifying Transformations	P.S. #6.8 – Identifying Transformations	
Tues. 2/24 Wed. 2/25	Review for Test #6	Review for Test #6	
Thurs. 2/26	Test#6	Video #7.1	

Notes 6.1 - Symmetries

There are four different	transformations:	
1.)		
2.)		
3.)		
4.)		
Line Symmetry:		
Letters that have line sy	mmetry:	
Point Symmetry:	Point symmetry exists when a figure is built around a	called the
	center of the figure. For every point in the it.	, there is another point found at the same
How can you tell if a fig.	ure has point symmetry?	K
Letters that have point s	symmetry:	

4

Transformation Rules Sheet

Line Reflections:

$$r_{x-axis}(x,y) = (x,-y)$$

$$r_{y-axis}(x,y) = (-x,y)$$

$$r_{v=x}(x,y)=(y,x)$$

$$r_{y=-x}(x,y) = (-y,-x)$$

Point Reflection:

$$R_{180^{\circ}}(x, y) = (-x, -y)$$

Rotations:

$$R_{00^{\circ}}(x,y) = (-y,x)$$

$$R_{180^{\circ}}(x, y) = (-x, -y)$$

$$R_{270^{\circ}}(x, y) = (y, -x)$$

$$R_{-90^{\circ}}(x, y) = (y, -x)$$

Translation:

$$T_{a,b}(x,y) = (x+a, y+b)$$

Dilation:

$$D_{\nu}(x,y) = (kx,ky)$$

- Congruent sides
- Congruent angles

Pre-image and image are **congruent** and **similar.**

- · Congruent sides
- Congruent angles

Pre-image and image are **congruent** and **similar.**

- Congruent sides
- Congruent angles

Pre-image and image are **congruent** and **similar.**

- Congruent sides
- Congruent angles

Pre-image and image are **ONLY similar.**

- Proportional sides
- Congruent angles

Notes 6.2 - Reflections

Reflection:

- 1.) Graph point A(3,5) on the set of axes to the right.
- 2.) Graph the image of A after a reflection in the y-axis. State the coordinates of the image.

- 3.) Graph point B(6,2) on the set of axes to the right.
- 4.) Graph the image of B after a reflection in the x-axis. State the coordinates of the image.

What do you notice?

- 6 Unit 6 Notes Math 8
 Transformations and Angle Relationships
- 5.) Given triangle ABC with coordinates A(3,1), B(5,3), C(6,1). Reflect triangle ABC over the line

y = x. State the new coordinates.

ijumalumalumalum I	namenamenamenamenamenamenamenamenamename	
a.) _.		
b.) ₋		
c.) _.		

Unit 6 Notes - Math 8 Transformations

1.) Graph rectangle OLEG O

Properties of Dilations	
a.)	
b.)	
c.)	

Notes 6.4 - Translations

- 1.) Translation: A translation ______ the same figure in the same _____.
- 2.) How would the following translation affect a coordinate?

Translation	X-Coordinate	Y-Coordinate
Move to 8 units to the right		
Move 3 units to the left		
Move 9 units up		
Move 7 units down		

3.) Translate triangle NFL with coordinates N(5,4) F(3,-1) and L(0,2) 2 units to the right and 2 units down.

N' _____

F' _____

4.) Two notations for left five, up six:

5.) Two notations for right two, down eleven:

6.) General form for a translation:

Properties of Translations

a.)

b.)

c.)

Notes 6.5 - Rotations

Rotation:

Which way is clockwise?

Which way is counterclockwise?

Steps to graphing rotations (multiples of 90°):

- 1.) Draw the original figure.
- 2.) Turn the paper.
 - *Do NOT graph the coordinates when the paper is turned!!!*
- 3.) Determine what the new coordinates are while the paper is turned.
 - * Do NOT graph the coordinates when the paper is turned!!!*
- 4.) Turnthe paper back.
- 5.) Graph the new coordinates.
- 1.) Given rectangle ABCD, with coordinates A (2,4), B(5,4), C(5,2), and D(2,2), find the new rectangle A'B'C'D' after a 90° clockwise rotation.

2.) Given rectangle ABCD, with coordinates A (2,4), B(5,4), C(5,2), and D(2,2), find the new rectangle A'B'C'D' after a (80)° clockwise rotation.

- 10 Unit 6 Notes Math 8 Transformations and Angle Relationships
- 3.) Given rectangle ABCD, with coordinates A (2,4), B(5,4), C(5,2), and D(2,2), find the new rectangle A'B'C'D' after a 270° clockwise rotation.

Summary

Rotation	(x,y) →

	Properties of rota	ามหมายนายนายนายนายนายนายนายนายนายนายนายนายนา	
	a.		
	b.		
	C.		
1			

Notes 6.6 - Angle Relationships

Word	Definition	Example
Parallel Lines	Lines that Notation: r s	$\begin{array}{c c} t \\ \hline & 1 \\ \hline & 4 \\ \hline & 3 \\ \end{array}$
	t is called the	5 6 S 8 7
Exterior Angles	Angles on the of the lines	
Interior Angles	Angles on the of the lines	
Alternate Exterior	Angles on the of the lines	
Angles*	and on sides of the transversal	
Alternate Interior Angles*	Angles on the of the lines and on sides of the transversal	
Corresponding Angles*	Angles that are in the same when the parallel lines are placed	
Vertical Angles*	Angles that are or from each other	

^{*}Angles that are ${\color{red} {\bf congruent}}$ to each other.

^{**}Angles on parallel lines that are **not** congruent are **supplementary** (add up to ______).

- 1.) What do the angles in a triangle add up to?
- 2.) If a triangle has two angles with measures of 39° and 81° , what is the measure of the third angle?

3.) In $\triangle ABC$, $m \angle A = 4x$, $m \angle B = 3x + 1$, and $m \angle C = x - 13$. Find the value of x and the measure of each angle.

4.) In each triangle below, find the missing angle.

5.) 18) Find *m∠YDC*.

Notes 6.7 - Similarity vs. Congruence

1.)	What is	the difference	between	congruency	and similarity?
-----	---------	----------------	---------	------------	-----------------

2.) What re	quirements	are :	there t	for	shapes	to be	similar	?
-------------	------------	-------	---------	-----	--------	-------	---------	---

3.)
$$\triangle$$
ABC ~ \triangle DEF. Answer the following questions.

a. Draw a picture of the two triangles.

b. Which angle corresponds to
$$\angle A$$
?

c. Which angle corresponds to
$$\angle B$$
?

d. Which angle corresponds to
$$\angle C$$
?

AB = 5	m∠A=31	DE =	<i>m</i> ∠ <i>D</i> =
<i>BC</i> = 8	<i>m∠B</i> =	<i>EF</i> = 5	mLE =
AC = 12	<i>m∠C</i> =	DF =	<i>m∠F</i> = 73

i. What is the scale factor?

^{4.)} Which transformation will result in a figure that is similar, but not congruent, to the original figure? Explain your reasoning.