Name: \qquad Class: \qquad

PS 6.1 - Factoring by GCF

1.) $5 x-30$
2.) $2 x^{2}-30$
3.) $4 x-12$
4.) $-5 x^{2}-20 x$
5.) $3 x^{2}+9$
6.) $7 x^{2}+24 x$

7.) $x^{3}+5 x^{2}$
8.) $3 x^{3}+27 x^{2}+9 x$
9.) $8 x^{4}+4 x^{2}-12 x$
10.) $a b^{3}+2 a^{2} b^{2}$
11.) $22 x^{3} y^{2} z^{2}+33 x^{2} y^{3} z^{2}+66 x^{2} y^{2} z^{3}$
12.) $189 x^{3}-108 x^{2}+162 x$
13.) Andrea reduced $-7 x^{2}+14 x$ to $-7 x(x+2)$. Is she correct? Explain your answer.
14.) The product of two consecutive integers is $x^{2}+x$. What are the two integers (in terms of x ?
15.) The area of a rectangular room is $-15 x^{6}+3 x^{4}-18 x^{3}+21 x$ and the width of the room is $3 x$. What is the length of the room in terms of x ?

PS 6.2 - Factoring Trinomials by Trial-and-Error

Note: The factoring problems are mixed and some problems are prime.
18.) $x^{2}+8 x+7$
19.) $3 x^{2}-2 x-8$
20.) $x^{2}-8 x+15$
22.) $-100+99 v+v^{2}$
24.) $3 x^{2}+x-14$
25.) $2 x^{2}-21 x-36$
26.) $-2 x^{2}+3 x+9$
27.) $r^{2}+\frac{6}{4} r+\frac{9}{16}$
28.) $x^{2}+5 x+6$
29.) $2 x^{2}+3 x-2$
30.) $x^{2}+8 x-12$
31.) $x^{2}+15 x+56$
32.) $2 x^{6}-3 x$
33.) $x^{2}-x-2$
34.) $3 x^{2}+109 x+36$
35.) $4 x^{2}+24 x+35$
36.) Find the perimeter of a rectangular piece of land whose area is $x^{2}+8 x-9$.
37.) The parking lot at Gene Simon's Donut Palace is going to be enlarged, so that there will be an additional 30 ft . of parking space in the front and 30 ft . on the side of the lot. Write an expression in terms of x that can be used to represent the area of the new parking lot.

Explain how your solution is demonstrated in the area model.
PS 6.3 - Factoring Trinomials by Grouping
Note: The factoring problems are mixed and some problems are prime.
38.) $m^{2}+m-90$
39.) $k^{2}-13 k+40$
40.) $3 x^{2}-2 x-5$
41.) $-2 x^{2}+5 x-2$
42.) $-4 x^{2}+4 x-1$
43.) $6 x^{2}+7 x+2$

44.) $3 x^{2}+10 x+7$
45.) $a^{2}+2 a b-3 b^{2}$
46.) $x^{2}+11 x-26$
47.) $x^{4}+3 x^{2}-10$
48.) $x^{2}-3 x+10$
49.) $4 x^{6}-8 x$
51.) $a^{3}-2 a^{2}+5 a-10$
52.) $3 x y-14+21 x-2 y$
53.) $3 x^{2}-22 x+24$
54.) The area of a rectangle is represented by the expression $18 x^{2}+12 x+2$ square units. Write two expressions to represent the dimensions.
55.) The area of a rectangular soccer field can be expressed as $x^{2}-6 x-27$ and the length is $(x-9)$, what is the width?

For $56-58$, find all values of k so each trinomial can be factored using integers.
56.) $r^{2}+k r-13$
57.) $x^{2}+k x+10$
58.) $x^{2}+8 x+k, k>0$

PS 6.4 - Factoring Special Cases of Binomials/Trinomials

Note: The factoring problems are mixed and some problems are prime.
59.) $t^{2}-25$
60.) $4 x^{2}-9$
61.) $16 h^{2}-36 k^{2}$
63.) $x^{4}-4$
65.) $9 y^{2}-100 z^{2}$
67.) $x^{2}-16 x-64$
69.) $4 x^{2}-12 x+9$
71.) $-9 r^{2}+81$
73.) $16 b^{2} c^{4}+25 d^{8}$
75.) $a^{4}-b^{6}$
62.) $x^{2}-20 x+100$
64.) $x^{6}-25$
66.) $x^{2}+10 x+25$
68.) $y^{8}-81 x^{4}$
70.) $x^{2}-8 x+16$
72.) $x^{2 m}-36 y^{2}$
74.) $\frac{1}{16} x^{2}-25 z^{2}$

76.) $9 x^{2}+12 x+4$
79.) The area of a square is $x^{2}-14 x+49$. State the length of one side of the square.
80.) The measure of a side of a square is x units. A new square is formed with each side 6 units longer than the original square's side. Write an expression to represent the area of the new square. (Hint: Draw the new square and count the squares and rectangles.)
81.) In the accompanying diagram, the width of the inner rectangle is represented by $x-3$ and its length by $x+3$. The width of the outer rectangle is represented by $3 x+4$ and its length by $3 x-4$.

$3 x+4$

a.) Find the area of the larger rectangle.
b.) Find the area of the smaller rectangle.
c.) Express the area of the lighter, outer shaded region as a polynomial in terms of x.

PS 6.5 - Factoring Completely

82.) $2 a^{2}+6 a+18$
84.) $4 n-n^{3}$
86.) $8 x^{2}+20 x+8$
88.) $6 x^{3}-2 x^{2}-4 x$
90.) $10 x^{2}-10$
92.) $9 x^{2}+15 x+4$
94.) $a x^{2}-18 a x+77 a$
87.) $x^{2}+\frac{11}{2} x+\frac{5}{2}$
89.) $2 x^{2}-x-6$
91.) $3 x^{2}-24 x+48$
93.) $18 a^{2}-48 a+32$
95.) $d^{8}-d^{2}$
98.) The area of a particular triangle can be represented by $x^{2}+\frac{3}{2} x-\frac{9}{2}$. What are its base and height in terms of x ?
99.) Two mathematicians are neighbors, with each owning a separate rectangular plot of land, which share a boundary and have the same dimensions. They agree that each has an area of $2 x^{2}+3 x+1$ square units. One mathematician sells his plot to the other. The other wants to put a fence around the perimeter of his new combined plot of land. How many linear units of fencing will he need in terms of x ?

Bonus: This question has two correct approaches and two different correct solutions. Can you find the other one?
100.)Draw a smiley face because you are done with your practice packet!

