Unit 6 Notes

Factoring

Tentative Schedule

Day	Classwork	Assignment	
Mon. 11/24 (all)	Test #5	Video #6.1 with Notes: Factoring by GCF	
Tues. 11/25 (S) Mon. 12/1 (R)	1 - 17	Video #6.2 with Notes: Factoring Trinomials	
Tues. 12/2 (all)	18 - 37	Video #6.3 with Notes: Factoring Trinomials by Grouping	
Wed. 12/3 (S) Thurs. 12/4 (R)	38 - 58	Video #6.4 with Notes: Factoring Special Cases of Binomials/Trinomials	
Fri. 12/5 (all)	59 - 81	Video #6.5 with Notes: Factoring Completely	
Fri. 12/5 (R) Mon. 12/8 (S)	Quiz #6 during Lab Class		
Mon. 12/8 (S) Tues. 12/9 (R)	82 - 100	Finish Practice Packet	
Wed. 12/10 (all)	Review for Test #6	Review for Test #6	
Thurs. 12/11 (S) Fri. 12/12 (R)	Test #6	ТВА	

Name:

GCF stan	ds for:		
	Common		
Factor			
prime: a natural # with two unique factors (one and itself)	Composite: Q NOTWOL NUMber with more than two unique divisor		
To find the GCF of a set of numbers, look f	or the <u>lowest</u>		
exponent.			

Notes 6.1 - Factoring by GCF

Find the GCF of the following. Then divide each number by the GCF.

1.)	18,24	
	CCF:	
	Divided by the GCF: 3 , 4	
2.)	90, 315	
	_{CCF:} <u>45</u>	
	Divided by the GCF: 2 , 7	
3.)	x ⁸ ,x ⁷ ,x ⁶	
	CCF:X [♥]	
	Divided by the GCF: \underline{X}^{2} , \underline{X} ,	
4.)	9a ⁴ b ³ ,15a ³ b ² ,3a ² b ⁴	
	$GCF: \frac{30^2b^2}{b^2}$	
	Divided by the GCF: $30^{2}b_{3}$	62
5.)	Distribute. $3x(x^3+8x^2+4)$	
	$3x^{4}+24x^{2}+12x^{2}$	

What is the GCF of the answer to number 5?

3X (undistribute and you'll get

4	Unit E	6 Notes - Algebra Enriched		
	Facto	oring		
			Steps to Factoring by GCF:	
	Ι.	Find the <u>GCF</u>	·	
	2.	Divide	the expression by the \underline{GCF}	·
	3.	Write the answer as	GCF (quotient)	(Undistribute)

Try these.

6.)
$$\begin{array}{c} -5x^{3}y+25x \\ -5x(x^{2}y-5) \end{array}$$
7.)
$$\begin{array}{c} 4x^{2}y+7xy \\ xy(4x+7) \end{array}$$
7.)
$$\begin{array}{c} 4x^{2}y+7xy \\ xy(4x+7) \end{array}$$

8.) Solve for a.
$$5a + 10ax = 4b$$

 $5a(1+2x) = 4b$

$$a = \frac{4b}{5(1+2x)}$$

9.) Solve for y.
$$3xy + 9y = 14$$

 $3y(X+3) = 14$

$$y = \frac{14}{3(x+3)}$$

Unit 6 Notes - Algebra Enriched Factoring 5

Notes 6.2 - Factoring Trinomials by Trial-and-Error

General form of a quadratic expression: $ax^2 + bx + c$

Multiply each expression below:

When you factor, you are "un-distributing" the trinomial into the product of two binomials. Try the following examples:

3.)
$$3x^2-2x-8$$

 $(3x+4)(x-2)$

 $\frac{8}{18}$

 $\frac{14}{3x^2+x-14}$

 $\frac{14}{3x^2+x-14}$

 $\frac{14}{3x+7}(x-2)$

 $\frac{8}{18}$

 $\frac{1}{8}$

 $\frac{$

5.)
$$x^{2}+x-20$$

 $(x+5)(x-4)$ $\frac{20}{120}$ $(-2x^{2}+3x+9)$ $\frac{2}{12}$ $(-2x+3)(x+3)$ $\frac{2}{12}$ $\frac{9}{12}$

6 Unit 6 Notes - Algebra Enriched Factoring

C. Find the pair that satisfies the requirements of the product-sum method (i.e., a pair of numbers whose product equals ac and whose sum is *b*).

-4 and 9

D. Rewrite the expression with the same first and last term but with an expended b term using that pair of factors as coefficients: $6\chi^2 + 5\chi - 6$

ΨX			,
6x2.	-4x79x	-	6

E. We now have four terms that can be entered into a tabular model or factored by grouping.

 $(6x^{2}-4x) + (9x-6)$

F. Pair the first two and the last two. Factor out a common factor for each group.

Try the following examples:

7.)
$$3x^2 - 2x - 8(3)(-8) = -24$$

 $(3x^2 - 6x) + (+x - 8)$
 $3x(x-2) + 4(x-2)$
 $(x-2)(3x+4)$

8 Unit 6 Notes - Algebra Enriched Factoring

Notes 6.4 - Special Cases of Factoring

Multiply the following binomials together:

1.)
$$(x-4)(x+4)$$

 $\chi^{2} + 4\chi - 4\chi - 16$
 $\chi^{2} - 16$

General form for a difference of perfect squares:

 $a^2 - b^2 = (a - b)(a + b)$

Factor:

5.) $x^2 + 16$

prime

6.)
$$x^{4} - 81$$

 $(\chi^{2} + 9)(\chi^{2} - 9)$
 $(\chi^{2} + 9)(\chi - 3)(\chi + 3)$

Multiply the following binomials together:

7.)
$$\begin{array}{c} (x+4)(x+4) \\ \chi^{2}+4x+4x+1b \\ \chi^{2}+8x+1b \end{array} \\ \end{array}$$

$$\begin{array}{c} 8.) \\ (3x+5)(3x+5) \\ sx \\ 9x^{2}+5x \\ sx \\ 5x \\ 25 \end{array} \\ \end{array} \\ \begin{array}{c} 9\chi^{2}+30\chi+25 \\ 9\chi^{2}+30\chi+25 \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 6eneral \ form \ for \ squaring \ a \ binomial: \\ (a+b)(a+b) = a^{2}+2ab+b^{2} \end{array}$$

Factor.

9.)
$$x^2 + 6x + 9$$

 $\left(\chi + 3\right)^2$

10.)
$$25x^2 + 60xy + 36y^2$$

 $(5\chi + 6y)^2$

11.) $x^2 - 14x + 49$ $(\chi - 7)^2$ 12.) $x^2 - 10x - 25$

Notes 6.5 - Factoring Completely

Try these steps in the following order.

- A. Is there a GCF?
- B. Does it look a Difference of Perfect Squares?
- C. Can I factor a trinomial by grouping or trial-and-error?
- D. Is my final answer completely factored?

Factor completely.

1.) $50x^2 - 242y^4$ $2(25x^2 - 121y^4)$ $2(5x+11y^2)(5x-11y^2)$

2.)
$$e^{3} + 2e^{2} - 35e$$

 $C(c^{2}+2c-35)$
 $C(c+7)(c-5)$

3.)
$$9x^{2} - 78x - 27$$

 $3(3x^{2} - 26x - 9)$ (3)(-9)= -27
 $3[(3x^{2} - 27x) + (x - 9)] = \frac{27}{3}$
 $3[(3x^{2} - 27x) + (x - 9)] = \frac{27}{3}$
 $3[(3x^{2} - 27x) + 1(x - 9)] = \frac{27}{3}$
 $3[(3x^{2} - 9)(3x + 1)] = \frac{27}{3}$

4.)
$$x^2y^2 + 7x^2y - 60x^2$$

 $x^2(y^2 + 7y^2 - 60)$
 $x^2(y + 7y - 60)$
 $x^2(y + 12)(y - 5)$