Unit 5 hotes Systenns of Equertions

herne:

Day	Date	Classwork	Assignment
	Thurs. 12/11	Test \#4	Watch Video \#5.1 with Notes - Solving Systems of Equations Graphically
1	Fri. 12/12 Mon. 12/15	Introduction to Solving Systems by Substitution	P.S. \#5.1
2	Tues. 12/16	Continue Solving Systems by Substitution	Watch Video \#5.3 with Notes - Solving Systems of Equations by Substitution
3	Wed. 12/17 Thurs. 12/18	Introduction to Solving Systems by Elimination	Finish P.S. \#5.3
4	Fri. 12/19	Continue Solving Systems by Elimination	Finish P.S. \#5.4 Watch Video \#5.5 - Solving Systems of Equations by Elimination
5	Mon. 1/5 Tues. 1/6	Activity	Finish P.S. \#5.5
6	Wed. 1/7	Quiz \#5	Video \#5.6-Applications of Systems of Equations
7	Thurs. 1/8 Fri. 1/9	Practice Applications of Systems of Equations	Finish P.S. \#5.6
8	Mon. 1/12	Activity Catch-up Day	Catch-up
9	Tues. 1/13 Wed. 1/14	Special Cases of Systems of Equations	P.S. \#5.7
10	Thurs. 1/15	Review for Test \#5	Review for Test \#5
11	$\begin{aligned} & \text { Fri. 1/16 } \\ & \text { Tues. } 1 / 20 \end{aligned}$	Review for Test \#5	Review for Test \#5
12	Wed. 1/21	Test \#5	

Notes 5. 1 - Solving Systenas Graphically
1.) Circle all ordered pairs (\underline{x}, y) that are solutions to the equation $4 x-y=10$.

	$\left(\frac{x}{3}, \frac{x}{3}\right)$	$(2,3)$	$(-1,-14)$	x
$4 x-y=10$	$4(2)-3=10$	$4(-1)-4=10$	$4(0)-10=10$	$4(3)-4=10$
$4(3)-2=10$	$8-3=10$	$-4+14=10$	$0+10=10$	$12-4=10$
$12-2=10$	$5 \neq 10$	$10=10$	$10=10$	$8 \neq 10$
$10=10$				

$\left(\frac{x}{3,2}\right)$

$$
4 x-y=10
$$

$$
10=10 \mathrm{r}
$$

$$
\begin{aligned}
& x \\
& (2,3)
\end{aligned}
$$

$$
\left(-1,-1^{y} 4\right)
$$

$$
4(2)-3=10
$$

$$
4(1)--H=10
$$

$$
8-3=10
$$

$$
-4+14=10
$$

$$
5 \neq 10
$$

$$
10=10 \checkmark
$$

(3,4)
$4(3)-4=10$
$12-4=10$
$8 \neq 10$
2.) Find another solution to $4 x-y=10$.

$$
\begin{array}{cl}
4(7)-18=10 & (7,18) \\
28-18=10 & \text { (answers vary) } \\
10=10 &
\end{array}
$$

3.) How many solutions are there to $4 x-y=10$?
infinite (infinite points make a line.)

System of Equations: a set of equations that have one simultaneous
Solution.
4.) $\frac{y=x-4}{y=-2 x+5}$

Solution: $(3,-1)$

$$
\begin{aligned}
y & =x-4 \\
-1 & =3-4 \\
-1 & =-1
\end{aligned}
$$

$$
\begin{aligned}
y & =-2 x+5 \\
-1 & =-2(3)+5 \\
-1 & =-6+5 \\
-1 & =-12
\end{aligned}
$$

5.)

$$
\begin{array}{lr}
3 y+18=6 x \rightarrow 3 y=6 x-18 \\
x-y=4 \\
x=y+4 & y=2 x-6
\end{array}
$$

Solution: $(2,-2)$

Check: (in original equations)

$$
\begin{aligned}
& 3 y+18=6 x \\
& 3(-2)+18=6(2) \\
& -6+18=12 \\
& 12=12
\end{aligned}
$$

notes 5.2 -Solving Systems Using Substitution Day
Given the following system of equations, solve for x and solve for y .
$3 x-2 y=4$
$x=2$

$$
\begin{gathered}
3 x-2 y=4 \\
3(2)-2 y=4 \\
6-2 y=4 \\
-6 \quad-6 \\
\hline-2 y=-2 \\
y=1
\end{gathered}
$$

Solve the following system of equations.

$$
\frac{y=3 x}{2 x+5 y}=34
$$

$$
\begin{aligned}
2 x+5 y & =34 \\
2 x+5(3 x) & =34 \\
2 x+15 x & =34 \\
17 x & =34 \\
x & =2
\end{aligned}
$$

Solve the following system of equations.
$\frac{x=2 y+2}{4 x+3 y=41}$

$$
\begin{gathered}
4 x+3 y=41 \\
4(2 y+2)+3 y=41 \\
8 y+8+3 y=41 \\
11 y+8=41 \\
-8=8 \\
11 y=33 \\
y=3
\end{gathered}
$$

$$
x=2 y+2
$$

$$
x=2(3)+2
$$

$$
x=6+2
$$

$$
x=8
$$

$$
(8,3)
$$

Kotes 5.3-solving Systenns Using Substitution Ders \mathbb{Z}

Solve the following system of equations:
3) $-5 x-6-4 x=21$

$$
\begin{aligned}
& -4 x+y=6 \\
& -5 x-y=21
\end{aligned} \begin{gathered}
1 \\
\begin{array}{l}
-4 x+y=6 \\
+4 x+4 x
\end{array} \\
y=6+4 x \\
(2)-5 x-y=21 \\
-5 x-(6+4 x)=21
\end{gathered}
$$

$$
-9 x-6=21
$$

$$
\begin{aligned}
& +6+6 \\
& -9 x=27
\end{aligned}
$$

$$
x=-3
$$

$$
\text { (4) }-4 x+y=6
$$

$$
-4(-3)+y=6
$$

$$
12+y=6 \text { int } y=-6
$$

List of Steps to Solve a System of Equations by Substitution: $\begin{aligned} & 12+6\end{aligned}$

$$
\begin{aligned}
& 3 x-2 y=11 \\
& x+2 y=9
\end{aligned}
$$

Steps	Solution	
1.) Isolate a variable in one equation. Look for the easiest variable to isolate!	$\begin{aligned} & x+2 y=9 \\ & -2 y-2 y \\ & x=9-2 y \end{aligned}$	
2.) Substitute that into the other equation.	$\begin{gathered} 3 x-2 y=11 \\ 3(9-2 y)-2 y= \\ \downarrow \end{gathered}$	
3.) Now that you only have one variable in the equation, solve it.	$\begin{gathered} 27-6 y-2 y=11 \\ 27-8 y=11 \\ -27 \quad-27 \\ \hline-8 y=-167 \end{gathered}$	
4.) Plug the answer into any equation to find the other variable.	$\begin{gathered} 3 x-2 y=11 \\ 3 x-2(2)=11 \\ 3 x-4=11 \\ 3 x=15 \\ x=5 \end{gathered}$	
5.) Write your answer as a coordinate.	$(5,2)$	
6.) Check the solution in both equations.	$\begin{gathered} 3 x-2 y=11 \\ 3(5>-2(2)=11 \\ 15-4=11 \\ 11=11 \end{gathered}$	$\begin{aligned} & x+2 y=9 \\ & 5+2(2)=9 \\ & 5+4=9 \\ & 9=9 \end{aligned}$

Notes 5.4 - solving System as Using Elimination Day

- Just like substitution, we want to end up with an equation with only _one___ variable. Using this method, we \qquad a variable by \qquad the equations.
- Make sure the signs are \qquad _.
- Make sure your variables \qquad up before you add!

$$
\begin{aligned}
& x+2 y=8 \\
& x-2 y=4
\end{aligned}
$$

You are going to work with your partners to determine a possible solution to solving the system of equations above. It does not matter if your answer is right or wrong. What matters it that you persevere and you take risks.

$$
\begin{gathered}
x+2 y=8 \\
+x-2 y=4 \\
\hline \frac{2 x}{2}=\frac{12}{2} \\
x=6
\end{gathered}
$$

1.)

$$
\begin{array}{r}
-(x+y=18) \\
x+2 y=25 \\
\hline
\end{array}
$$

2.)

$$
\begin{aligned}
& 3 x-5 y=3 \\
& 4 x, 5 y=4 \\
& \frac{7 x}{7}=\frac{7}{7} \\
& x=1
\end{aligned} \quad \begin{array}{r}
4 x+5 y=4 \\
4(1)+5 y=4 \\
4+5 y=4 \\
-4 y-4 \\
5 y=0 \\
y=0
\end{array}
$$

Notes 5.5 -solving Systems by Elimination Defy z

$$
\begin{aligned}
& 4 x+3 y=-1 \\
& 5 x+4 y=1
\end{aligned}
$$

You are going to work with your partners to determine a possible solution to solving the system of equations above. It does not matter if your answer is right or wrong. What matters it that you persevere and you take risks.

$$
\begin{gathered}
-4(4 x+3 y=-1) \\
3(5 x+4 y=1)
\end{gathered} \rightarrow \begin{aligned}
& -16 x-12 y=4 \\
& \frac{15 x+12 y=3}{-x}=7 \\
& -1 \\
& x=-1
\end{aligned} \quad \begin{aligned}
& 4 x+3 y=-1 \\
& 4(-7)+3 y=-1 \\
& -28+3 y=-1 \\
& +28+28 \\
& 3 y=27 \\
& y=9
\end{aligned}
$$

1.) 9

$$
\begin{aligned}
& 9(x+y=14) \rightarrow 9 x+9 y=126 \\
& 9 x-9 y=36 \rightarrow 9 x-9 y=36 \\
& \hline 18 x=162 \\
& x=9 \\
& x+y=14 \\
& 9+y=14 \\
& \frac{-9}{} 9 \\
& y=5 \\
&(9,5)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2.) } \frac{3 y}{}=-2 x+5 \\
& \text { 2.) } \begin{array}{l}
2(5 x+4 y=16) \rightarrow 10 y+8 y=32 \\
(2 x+3 y=5)
\end{array} \\
& -5(2 x+3 y=5) \rightarrow-16 x-15 y=-25 \\
& -7 y=7 \\
& y=-1 \\
& 5 x+4 y=16 \\
& 5 x+4(-1)=16 \\
& 5 x-4=16 \\
& 5 x=20 \\
& x=4
\end{aligned}
$$

Motes 5.6 -Applications of Systems of Equations
Do not forget to write \qquad statements \qquad !
1.) Alexa purchased 12 pens and 14 notebooks for $\$ 20$. Hannah bought 7 pens and 4 notebooks
for $\$ 7.50$. Find the price of one pen and the price of one notebook, algebraically.
Let cost of pen $=p$
Let cost of notebook $=n$

$$
\begin{gathered}
\left.2(12 p+14 n=20) \rightarrow \begin{array}{l}
24 p+28 n=40 \\
-7(7 p+4 n=75)
\end{array}\right] \begin{array}{c}
-49 p-28 n=-52.5 \\
-25 p=-12.5 \\
p=0.5
\end{array} \\
\end{gathered}
$$

$$
\begin{gathered}
12 p+14 n=20 \\
12(0.5)+14 n=20 \\
6+14 n=20 \\
14 n=14 \\
n=1
\end{gathered}
$$

one pen costs \$0.50 and one notebook
costs $\$ 1.00$.
2.) Tyler has a collection of grasshoppers and crickets. He has 561 insects in all. The number of grasshoppers is twice the number of crickets. Find the number of each type of insect that he has. Let \# of grasshoppers $=g$

Let $\#$ of crickets $=c$
$\left.\begin{array}{l}9+c=561 \\ y=2 c\end{array}\right\}$ substitution

$$
\begin{array}{rl}
2 c+c & =561 \\
3 c & =561 \\
c & =187 \\
g=2 c & 2(187)=374
\end{array}
$$

3.) A total of 600 tickets were sold for a concert. If the tickets sold in advance cost $\$ 25$ each and the tickets sold at the door cost $\$ 32$ each, and $\$ 16,309$ worth of tickets was sold, how many of each type of ticket was sold?
Let \# of advancetix $=a$
Let \#of door fix = d

$$
\begin{aligned}
-2 t a+d=600 \rightarrow-25 a-25 d & =-15000 \\
25 a+32 d=16309 \rightarrow 25 a+32 d & =16309 \\
7 d & =1309 \\
d & =187 \\
a+d & =600 \\
a+187 & =600 \\
a & =413
\end{aligned}
$$

Notes 5. I - Special Cases of Systenns of Equations
Warm-up: Please solve the following equations.

You have learned to find the unique solution to a system of linear equations, when it exists.
However, not every system of linear equations has a unique solution.

3.) With your partners, please solve the following system of equations using substitution.

$$
\left.\begin{array}{l}
\frac{2 x+y=1}{4 x+2 y=4} \rightarrow
\end{array} \begin{array}{l}
2 x+y=1 \\
-2 x \\
y=1-2 x
\end{array}\right]+\begin{aligned}
& 4 x+2 y=4 \\
& 4 x+2(y-2 x)=4 \\
& 4 x+2-4 x=4 \\
& 2 \neq 4
\end{aligned}
$$

4.) With your partners, please solve the following system of equations using elimination.

$$
\left.\begin{array}{rl}
-2(2 x+y=1) & \rightarrow
\end{array} \begin{array}{l}
-4 x-2 y=-2 \\
4 x+2 y=4
\end{array}\right) \frac{4 x+2 y=4}{0=2}
$$

5.) With your partners, please solve the following system of equations by graphing.

$$
\begin{array}{ll}
\frac{2 x+y=1}{4 x+2 y=4} \\
2 x+y=1 & 4 x+2 y=4 \\
-2 x-2 x & -4 x \\
\hline y=1-2 x & \frac{2 y}{2}=\frac{4-4 x}{2} \frac{4 x}{2} \\
y=2-2 x
\end{array}
$$

6.) What happened when you tried to solve the equation with all three methods?! There were no solutions!
7.) With your partners write a thorough explanation why this happened algebraically. The variobles ore the same 1Ghen the equations are simplified _-_so_it's impossible to _-nave the some_vcuriables equal_to_different _-_Constants.
\qquad
8.) With your partners write a thorough explanation why this happened graphically. -They howe the same slope (same variables), leut different --_y-intercepts (different_constants), the lines are parallel _-_ andthevefore never intersect.
\qquad
9.) With your partners, please solve the following system of equations using substitution.

$$
\begin{array}{lc}
x+2 y=2 \\
2 x+4 y=4
\end{array} \begin{gathered}
x+2 y=2
\end{gathered} \begin{gathered}
2 x+4 y=4 \\
\frac{x y}{2 x+2 y} \\
\hline x=2-2 y
\end{gathered} \begin{gathered}
2-2 y+4 y=4 \\
4-4 y+4 y=4 \\
4=4
\end{gathered}
$$

10.) With your partners, please solve the following system of equations by graphing.

$$
x+2 y=2
$$

$$
2 x+4 y=4
$$

$x+2 y=2$

$$
2 x+4 y=4
$$

$$
\frac{-x-\frac{2 y}{2}=\frac{-x}{2}+\frac{2}{2}}{\frac{-2 x}{4}}=\frac{-2 x+\frac{4}{4}}{4}
$$

$$
y=-\frac{1}{2} x+1
$$

$$
y=-\frac{1}{2} x+1
$$

They're the same line -so they intersect ∞ times.

11.) With your partners, please solve the following system of equations using elimination.

$$
\begin{array}{r}
-2(x+2 y=2) \rightarrow \frac{-2 x-4 y=-4}{2 x+4 y=4} \rightarrow \frac{2 x+4 y=4}{0}=0
\end{array}
$$

os solutions
12.) What happened when you tried to solve the equation with all three methods?!
13.) With your partners write a thorough explanation why this happened with algebraically.

When the equations are simplified, they are exactly \qquad the same so any set of ordered peirs that satisfy \qquad one equation will satisfy, the other equation
\qquad
14.) With your partners write a thorough explanation why this happened graphically.

When the equations ore simplified, they are exactly the same so they'll both have the same graph_ Each line will intersect with the other line evert where

Summary:

- There is no solution when the variole are the same but the constant are different (algebraically)_ or the lines are porallel_(graphicallle)... Example:

$$
\begin{aligned}
& 2 x+3 y=1 \\
& 2 x+3 y=9
\end{aligned}
$$

- There is one unique solution when the variables are different (algebraically)
\qquad
Example:

$$
\begin{aligned}
& 2 x+3 y=1 \\
& 5 x+7 y=9
\end{aligned}
$$

- There are infinite solutions when the Variables and the constants ore the -_same or the lines ave the same (graphically)
Example:

$$
\begin{aligned}
& 2 x+3 y=1 \\
& 4 x+6 y=2
\end{aligned}
$$

